We report the first reductive coupling of unactivated alkenes with N-methoxy pyridazinium, imidazolium, quinolinium, and isoquinolinium salts under hydrogen atom transfer (HAT) conditions, and an expanded scope for the coupling of alkenes with N-methoxy pyridinium salts. N-Methoxy pyridazinium, imidazolium, quinolinium, and isoquinolinium salts are accessible in 1-2 steps from the commercial arenes or arene N-oxides (25-99%). N-Methoxy imidazolium salts are accessible in three steps from commercial amines (50-85%). In total 36 discrete methoxyheteroarenium salts bearing electron-donating, electron-withdrawing, alkyl, aryl, halogen, and haloalkyl substituents were prepared (several in multigram quantities) and coupled with 38 different alkenes. The transformations proceed under neutral conditions at ambient temperature, provide monoalkylation products exclusively, and form a single alkene addition regioisomer. Preparatively useful and complementary site selectivities in the addition of secondary and tertiary radicals to pyidinium salts are documented: harder secondary radicals favor C-2 addition (2->10:1), while softer tertiary radicals favor bond formation to C-4 (4.7->29:1). A diene possessing a 1,2-disubstituted and 2,2-disubstituted alkene undergoes hydropyridylation at the latter exclusively (61%) suggesting useful site selectivities can be obtained in polyene substrates. The methoxypyridinium salts can also be employed in dehydrogenative arylation, borono-Minisci, and tandem arylation processes. Mechanistic studies support the involvement of a radical process.
The Stony Brook SYNCHEM system is a large knowledge-based domain-specific heuristic problem-solving program that is able to find valid synthesis routes for organic molecules of substantial interest and complexity without online guidance on the part of its user. In common with many such AI performance programs, SYNCHEM requires a substantial knowledge base to make it routinely useful, but as the designers of most of these programs have discovered, it is very difficult to engage domain experts to the long-term dedication and intensity of commitment necessary to create a production-quality knowledge base. Isolde and tristan are machine learning programs that use large computer-readable databases of specific reaction instances as a source of training examples for algorithms designed to extract the underlying reaction schemata via inductive and deductive generalization. Isolde learns principally by inductive generalization, while tristan makes use of a methodology that is primarily deductive, and which is usually described as explanation-based learning. Since the individual reaction entries in most computer-readable databases are often haphazardly sorted and classified, a taxonomy program called brangane has been written to partition the input databases into coherent reaction classes using the methodology of conceptual clustering.
A number of recent papers have suggested that gene family content can be used to resolve phylogenies, particularly in the case of prokaryotes, in which extensive horizontal gene transfer means that individual gene phylogenies may not mirror the organismal phylogeny. However, no study has yet examined how sensitive such analyses are to the criterion of homology assessment used to assemble multigene families. Using data from 99 completely sequenced prokaryotic genomes, we examined the effect of homology criteria in phylogenetic analyses wherein presence or absence of each family in the genome was used as a cladistic character. Different criteria resulted in evidence for contradictory tree topologies, sometimes with high bootstrap support. A moderately strict criterion seemed best for assembling multigene families in a biologically meaningful way, but it was not necessarily preferable for phylogenetic analysis. Instead, a very strict criterion, which broke up gene families into smaller subfamilies, seemed to have advantages for phylogenetic purposes. The poor performance of gene family content-based phylogenetic analysis in the case of prokaryotes appears to reflect high levels of homoplasy resulting not only from horizontal gene transfer but also, more importantly, from extensive parallel loss of gene families in certain bacteria genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.