The effect of exogenous α-ketoglutarate (αKG) and the peritubular Na+-dicarboxylate (Na-DC) cotransporter on organic anion/dicarboxylate (OA/DC) exchange in S2 segments of single, nonperfused rabbit proximal tubules was measured using 1 μM fluorescein (FL), a model OA, and epifluorescence microscopy. The effect of different transmembrane distributions of 10 μM αKG on peritubular FL uptake was measured at 37°C using bicarbonate-buffered, nutrient-containing buffers, which are conditions similar to those found in vivo. Compared with FL uptake in the absence of exogenous αKG, preloading tubules with αKG ( trans-configuration) or acute exposure to αKG ( cis-configuration) increased FL uptake 62% and 54%, respectively, whereas a cis-trans-configuration of αKG increased FL uptake by 76%. The cis-stimulation of FL uptake by αKG was rapid, within 5–7 s. This stimulation was blocked 96% by simultaneous exposure to 2 mM Li+, indicating that stimulation of transport was secondary to the uptake of exogenous αKG. In the absence of exogenous αKG, selective inhibition of Na-DC cotransport using 2 mM Li+ or 1 mM methylsuccinate decreased FL uptake by 25% (effects that were reversible but not additive), suggesting that the Na-DC cotransporter recycles endogenous αKG that has left the cell in exchange for FL and that this activity supports ∼25% of baseline activity of the OA/DC exchanger. With recycling of αKG accounting for ∼25% of FL uptake and with accumulation of exogenous αKG accounting for another ∼75% increase in FL uptake, Na-DC cotransport appears to directly support (25% + 75%)/175%, or ∼57%, of total FL transport.
Epifluorescence microscopy was used to study peritubular transport of the fluorescent mycotoxin ochratoxin A (OTA) into single proximal tubule segments of the rabbit. Initial rates of OTA uptake into S2 segments were saturable and adequately described by Michaelis-Menten kinetics, with an apparent Km of 2.2+/-0.3 microM (SEM). Several lines of evidence indicated that peritubular uptake of OTA in S2 segments was effectively limited to the "classical" organic anion transporter. First, 5 mM p-aminohippurate (PAH) cis-inhibited the uptake of 1 microM OTA into tubules by 96%. Kinetic analysis of the inhibition of OTA uptake by PAH (100 microM to 5 mM) yielded an apparent Ki of 164 microM, similar to the 100 to 200 microM range of Km values previously reported for the peritubular uptake of PAH. Second, efflux of OTA from tubules was trans-stimulated 3.2-fold by the presence of 2.5 mM PAH in the uptake medium. Third, 100 microM alpha-ketoglutarate (alphaKG) trans-stimulated the uptake rate of 1 microM OTA by 1.8-fold. Fourth, besides PAH, other organic anions effectively cis-inhibited the uptake of 1 microM OTA into tubules (inhibitor, % inhibition): 1.5 mM alphaKG, 80%; 1 mM probenecid, 100%; 1 mM piroxicam, 100%; 1 mM octanoate, 100%. In contrast, 1.5 mM tetraethylammonium, an organic cation, blocked uptake of 1 microM OTA by only 7%. The inhibition of OTA uptake into S1 and S3 segments of the proximal tubule was qualitatively similar: 5 mM PAH cis-inhibited the uptake of 1 microM OTA by approximately 95% in both S1 and S3 segments. Thus, peritubular OTA uptake into all segments of the proximal tubule appears to be dominated by its interaction with the classical organic anion transporter. The high-affinity and relatively high capacity of this pathway for OTA suggest that peritubular uptake may be a significant avenue for the entry of this toxin into proximal tubule cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.