Pharmacovigilance investigators, a social network, and basic scientists can collaborate on pharmacovigilance investigations. Revised product labels describing a new serious adverse drug reaction, levofoxacin-associated long-term disability, as recommended by an FDA advisory committee, are advised.
Cite this article as: Edwards BJ, Laumann AE, Nardone B, Miller FH, Restaino J, Raisch DW, et al. Advancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a research on adverse drug events and reports (RADAR) report. Br J Radiol 2014;87:20140307. FULL PAPERAdvancing pharmacovigilance through academic-legal collaboration: the case of gadolinium-based contrast agents and nephrogenic systemic fibrosis-a research on adverse drug events and reports (RADAR) report Results: The FAERS encompassed the largest number (n 5 1395) of NSF reports. The ICNSFR contained the most complete (n 5 335, 100%) histopathological data. A total of 382 individual biopsy-proven, product-specific NSF cases were analysed from the legal data set. 76.2% (291/382) identified exposure to gadodiamide, of which 67.7% (197/291) were unconfounded. Additionally, 40.1% (153/382) of cases involved gadopentetate dimeglumine, of which 48.4% (74/153) were unconfounded, while gadoversetamide was identified in 7.3% (28/382) of which 28.6% (8/28) were unconfounded. Some cases involved gadobenate dimeglumine or gadoteridol, 5.8% (22/382), all of which were confounded. The mean number of exposures to gadolinium-based contrast agents (GBCAs) was gadodiamide (3), gadopentetate dimeglumine (5) and gadoversetamide (2). Of the 279 unconfounded cases, all involved a linear-structured GBCA. 205 (73.5%) were a non-ionic GBCA while 74 (26.5%) were an ionic GBCA. Conclusion: Clinical and legal databases exhibit unique characteristics that prove complementary in safety evaluations. Use of the legal data set allowed the identification of the most commonly implicated GBCA. Advances in knowledge: This article is the first to demonstrate explicitly the utility of a legal data set to pharmacovigilance research.
Purpose: Pharmaceutical safety is a public health issue. In 2005, the Connecticut Attorney General (AG) raised concerns over adverse drug reactions in off-label settings, noting that thalidomide was approved to treat a rare illness, but more than 90% of its use was off label. A hematologist had reported thalidomide with doxorubicin or dexamethasone was associated with venous thromboembolism (VTE) rates of 25%. We review US Food and Drug Administration (FDA) and manufacturer responses to a citizen petition filed to address these thalidomide safety issues.Methods: Case study. Results:The AG petitioned the FDA requesting thalidomiderelated safety actions. Coincidentally, the manufacturer submitted a supplemental New Drug Approval (sNDA), requesting approval to treat multiple myeloma with thalidomide-dexamethasone. FDA safety officers reviewed the petition and the literature and noted that VTE risks with thalidomide were not appropriately addressed in the existing package insert. In the sNDA application, the manufacturer reported thalidomide-associated toxicities for multiple myeloma were primarily somnolence and neurotoxicity, and a proposed package insert did not focus on VTE risks. In October, the FDA informed the Oncology Drug Division that VTE risks with thalidomide were poorly addressed in the existing label. After reviewing this memorandum, an Oncology Drug Division reviewer informed the manufacturer that approval of the sNDA would be delayed until several thalidomide-associated VTE safety actions, including revisions of the package insert, were implemented. The manufacturer and FDA agreed on these actions, and the sNDA was approved. Conclusion:New approaches addressing off-label safety are needed. The conditions that facilitated the successful response to this citizen petition are uncommon.
Oncology-associated adverse drug/device reactions can be fatal. Some clinicians who treat single patients with severe oncology-associated toxicities have researched case series and published this information. We investigated motivations and experiences of select individuals leading such efforts. Clinicians treating individual patients who developed oncology-associated serious adverse drug events were asked to participate. Inclusion criteria included having index patient information, reporting case series, and being collaborative with investigators from two National Institutes of Health funded pharmacovigilance networks. Thirty-minute interviews addressed investigational motivation, feedback from pharmaceutical manufacturers, FDA personnel, and academic leadership, and recommendations for improving pharmacovigilance. Responses were analyzed using constant comparative methods of qualitative analysis. Overall, 18 clinicians met inclusion criteria and 14 interviewees are included. Primary motivations were scientific curiosity, expressed by six clinicians. A less common theme was public health related (three clinicians). Six clinicians received feedback characterized as supportive from academic leaders, while four clinicians received feedback characterized as negative. Three clinicians reported that following the case series publication they were invited to speak at academic institutions worldwide. Responses from pharmaceutical manufacturers were characterized as negative by 12 clinicians. One clinician’s wife called the post-reporting time the “Maalox month,” while another clinician reported that the manufacturer collaboratively offered to identify additional cases of the toxicity. Responses from FDA employees were characterized as collaborative for two clinicians, neutral for five clinicians, unresponsive for negative by six clinicians. Three clinicians endorsed developing improved reporting mechanisms for individual physicians, while 11 clinicians endorsed safety activities that should be undertaken by persons other than a motivated clinician who personally treats a patient with a severe adverse drug/device reaction. Our study provides some of the first reports of clinician motivations and experiences with reporting serious or potentially fatal oncology-associated adverse drug or device reactions. Overall, it appears that negative feedback from pharmaceutical manufacturers and mixed feedback from the academic community and/or the FDA were reported. Big data, registries, Data Safety Monitoring Boards, and pharmacogenetic studies may facilitate improved pharmacovigilance efforts for oncology-associated adverse drug reactions. These initiatives overcome concerns related to complacency, indifference, ignorance, and system-level problems as barriers to documenting and reporting adverse drug events- barriers that have been previously reported for clinician reporting of serious adverse drug reactions.
Background Adverse drug/device reactions (ADRs) can result in severe patient harm. We define very serious ADRs as being associated with severe toxicity, as measured on the Common Toxicity Criteria Adverse Events (CTCAE)) scale, following use of drugs or devices with large sales, large financial settlements, and large numbers of injured persons. We report on impacts on patients, clinicians, and manufacturers following very serious ADR reporting. Methods We reviewed clinician identified very serious ADRs published between 1997 and 2019. Drugs and devices associated with reports of very serious ADRs were identified. Included drugs or devices had market removal discussed at Food and Drug Advisory (FDA) Advisory Committee meetings, were published by clinicians, had sales > $1 billion, were associated with CTCAE Grade 4 or 5 toxicity effects, and had either >$1 billion in settlements or >1,000 injured patients. Data sources included journals, Congressional transcripts, and news reports. We reviewed data on: 1) timing of ADR reports, Boxed warnings, and product withdrawals, and 2) patient, clinician, and manufacturer impacts. Binomial analysis was used to compare sales pre- and post-FDA Advisory Committee meetings. Findings Twenty very serious ADRs involved fifteen drugs and one device. Legal settlements totaled $38.4 billion for 753,900 injured persons. Eleven of 18 clinicians (61%) reported harms, including verbal threats from manufacturer (five) and loss of a faculty position (one). Annual sales decreased 94% from $29.1 billion pre-FDA meeting to $4.9 billion afterwards ( p <0.0018). Manufacturers of four drugs paid $1.7 billion total in criminal fines for failing to inform the FDA and physicians about very serious ADRs. Following FDA approval, the median time to ADR reporting was 7.5 years (Interquartile range 3,13 years). Twelve drugs received Box warnings and one drug received a warning (median, 7.5 years following ADR reporting (IQR 5,11 years). Six drugs and 1 device were withdrawn from marketing (median, 5 years after ADR reporting (IQR 4,6 years)). Interpretation Because very serious ADRs impacts are so large, policy makers should consider developing independently funded pharmacovigilance centers of excellence to assist with clinician investigations. Funding This work received support from the National Cancer Institute (1R01 CA102713 (CLB), https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-cancer-institute-nci ; and two Pilot Project grants from the American Cancer Society's Institutional Grant Award to the University of South Carolina (IRG-13–043–01) https://www.cancer.org/ (SH; BS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.