Modeling of Resistive RAMs (RRAMs) is a herculean task due to its non-linearity. While the exigent need for a model has motivated research groups to formulate realistic models, the diversity in RRAMs' characteristics has created a gap between model developers and model users. This paper bridges the gap by proposing an algorithm by which the parameters of a model are tuned to specific RRAMs. To this end, a physicsbased compact model was chosen due to its flexibility, and the proposed algorithm was used to exactly fit the model to different RRAMs, which differed greatly in their material composition and switching behavior. Further, the model was extended to simulate multiple Low Resistance States (LRS), which is a vital focus of research to increase memory density in RRAMs. The ability of the model to simulate the switching from a high resistance state to multiple LRS was verified by measurements on 1T-1R cells.
The flow of data between processing and memory units in contemporary computing systems is their main performance and energy-efficiency bottleneck, often referred to as the ‘von Neumann bottleneck’ or ‘memory wall’. Emerging resistance switching memories (memristors) show promising signs to overcome the ‘memory wall’ by enabling computation in the memory array. Majority logic is a type of Boolean logic, and in many nanotechnologies, it has been found to be an efficient logic primitive. In this paper, a technique is proposed to implement a majority gate in a memory array. The majority gate is realised in an energy-efficient manner as a memory R E A D operation. The proposed logic family disintegrates arithmetic operations to majority and NOT operations which are implemented as memory R E A D and W R I T E operations. A 1-bit full adder can be implemented in 6 steps (memory cycles) in a 1T–1R array, which is faster than I M P L Y , N A N D , N O R and other similar logic primitives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.