This paper characterises the use of activity trackers as 'lived informatics'. This characterisation is contrasted with other discussions of personal informatics and the quantified self. The paper reports an interview study with activity tracker users. The study found: people do not logically organise, but interweave various activity trackers, sometimes with ostensibly the same functionality; that tracking is often social and collaborative rather than personal; that there are different styles of tracking, including goal driven tracking and documentary tracking; and that tracking information is often used and interpreted with reference to daily or short term goals and decision making. We suggest there will be difficulties in personal informatics if we ignore the way that personal tracking is enmeshed with everyday life and people's outlook on their future.
BackgroundReducing sitting time as well as increasing physical activity in inactive people is beneficial for their health. This paper investigates the effectiveness of the European Fans in Training (EuroFIT) programme to improve physical activity and sedentary time in male football fans, delivered through the professional football setting.Methods and findingsA total of 1,113 men aged 30–65 with self-reported body mass index (BMI) ≥27 kg/m2 took part in a randomised controlled trial in 15 professional football clubs in England, the Netherlands, Norway, and Portugal. Recruitment was between September 19, 2015, and February 2, 2016. Participants consented to study procedures and provided usable activity monitor baseline data. They were randomised, stratified by club, to either the EuroFIT intervention or a 12-month waiting list comparison group. Follow-up measurement was post-programme and 12 months after baseline. EuroFIT is a 12-week, group-based programme delivered by coaches in football club stadia in 12 weekly 90-minute sessions. Weekly sessions aimed to improve physical activity, sedentary time, and diet and maintain changes long term. A pocket-worn device (SitFIT) allowed self-monitoring of sedentary time and daily steps, and a game-based app (MatchFIT) encouraged between-session social support. Primary outcome (objectively measured sedentary time and physical activity) measurements were obtained for 83% and 85% of intervention and comparison participants. Intention-to-treat analyses showed a baseline-adjusted mean difference in sedentary time at 12 months of −1.6 minutes/day (97.5% confidence interval [CI], −14.3–11.0; p = 0.77) and in step counts of 678 steps/day (97.5% CI, 309–1.048; p < 0.001) in favor of the intervention. There were significant improvements in diet, weight, well-being, self-esteem, vitality, and biomarkers of cardiometabolic health in favor of the intervention group, but not in quality of life. There was a 0.95 probability of EuroFIT being cost-effective compared with the comparison group if society is willing to pay £1.50 per extra step/day, a maximum probability of 0.61 if society is willing to pay £1,800 per minute less sedentary time/day, and 0.13 probability if society is willing to pay £30,000 per quality-adjusted life-year (QALY). It was not possible to blind participants to group allocation. Men attracted to the programme already had quite high levels of physical activity at baseline (8,372 steps/day), which may have limited room for improvement. Although participants came from across the socioeconomic spectrum, a majority were well educated and in paid work. There was an increase in recent injuries and in upper and lower joint pain scores post-programme. In addition, although the five-level EuroQoL questionnaire (EQ-5D-5L) is now the preferred measure for cost-effectiveness analyses across Europe, baseline scores were high (0.93), suggesting a ceiling effect for QALYs.ConclusionParticipation in EuroFIT led to improvements in physical activity, diet, body weight, and biomarkers of...
BackgroundAlthough many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work.ObjectivesThis study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed.MethodAn interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis.ResultsA total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance).ConclusionsThe rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid res...
Testing is a key part of any systems engineering project. There is an extensive literature on testing, but very little that focuses on how testing is carried out in real-world circumstances. This is partly because current practices are often seen as unsophisticated and ineffective. We believe that by investigating and characterising the real-world work of testing we can help question why such 'bad practices' occur and how improvements might be made. We also argue that the testing literature is too focused on technological issues when many of the problems, and indeed strengths, have as much do with work and organisation. In this paper we use empirical examples from four systems engineering projects to demonstrate how and in what ways testing is a cooperative activity. In particular we demonstrate the ways in which testing is situated within organisational work and satisfices organisational and marketplace demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.