CD28 provides an important costimulatory signal in T cell activation that regulates multiple cellular processes including proliferation and survival. Several signal transduction pathways are activated by CD28; however, the precise biochemical mechanism by which CD28 regulates T cell function remains controversial. Retroviral gene transfer into primary T cells from TCR-transgenic, CD28-deficient mice was used to determine the specific sequences within CD28 that determine function. Discrete regions of the cytoplasmic domain of CD28 were identified that differentially regulate T cell proliferation and induction of the anti-apoptotic protein Bcl-XL. Mutation of C-terminal proline residues abrogated the proliferative and cytokine regulatory features of CD28 costimulation while preserving Bcl-XL induction. Conversely, mutation of residues important in phosphatidylinositol 3-kinase activation partially inhibited proliferation but prevented induction of Bcl-XL. Thus the ability of CD28 to regulate proliferation and induction of Bcl-XL map to distinct motifs, suggesting independent signaling cascades modulate these biologic effects.
Airway inflammation after inhaled allergen exposure requires the recruitment, activation, and differentiation of antigen-specific T cells into T helper (Th) 2 effector cells. These processes are regulated not only by antigen engagement of the T-cell receptor, but also by specific accessory molecules on the surface of the T cell. We examined how the balance of signals derived through the CD28 and cytotoxic T-lymphocyte antigen (CTLA) 4 receptors modulate the outcome of inhaled antigen exposure in a murine model of allergic airway inflammation. Mice deficient in CD28 have defective Th2 cell development and failed to develop inflammation after sensitization and inhaled challenge with ovalbumin. Prevention of B7-CTLA4 interactions in CD28-deficient mice restored lymphocyte but not eosinophil recruitment to the airway. Analysis of cytokine gene expression revealed that T cells from CD28-deficient mice failed to differentiate into Th2 cells in either the presence or absence of B7-dependent signals, and therefore did not recruit eosinophils to the airway. Thus, the processes of T-cell recruitment to the airway and T-cell differentiation have distinct requirements for signals mediated through the CD28 and CTLA4 receptors, demonstrating that these receptors are important regulatory components in the development of allergic airway inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.