The core of a nuclear reactor presents exceptionally stringent requirements for structuralmaterialsduetoitshightemperatureandintenseradiationaswellasitsneed for unfailing mechanical integrity [1][2][3][4] . Thus, candidate materials for nuclear applications must possess excellent irradiation tolerance, high strength, and thermal stability.However,thesepropertiesaredifficulttorealizesimultaneouslyinonematerialbecause of apparently intrinsic tradeoffs between them. Here we report a novel interface engineering strategy that simultaneously achieves superior irradiation tolerance, high strength, and high thermal stability in bulk nanolayered (NL) Cu-Nb composites. By synthesizing bulk NL Cu-Nb composites containing interfaces with controlled sink efficiencies, we design a material in which nearly all irradiation-induced defects are
Bulk nanostructured metals can attribute both exceptional strength and poor thermal stability to high interfacial content, making it a challenge to utilize them in high-temperature environments. Here we report that a bulk two-phase bimetal nanocomposite synthesised via severe plastic deformation uniquely possesses simultaneous high-strength and high thermal stability. For a bimetal spacing of 10 nm, this composite achieves an order of magnitude increase in hardness of 4.13 GPa over its constituents and maintains it (4.07 GPa), even after annealing at 500°C for 1 h. It owes this extraordinary property to an atomically well-ordered bimaterial interface that results from twin-induced crystal reorientation, persists after extreme strains and prevails over the entire bulk. This discovery proves that interfaces can be designed within bulk nanostructured composites to radically outperform previously prepared bulk nanocrystalline materials, with respect to both mechanical and thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.