Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.
If the brain is injured due to traumatic brain injury (TBI), it will lose some of its cells. If our brain cells get damaged, we may be left with problems controlling our movement, our speech, or even our memory! In the future, tissue engineering may be able to help people with TBI. Tissue engineering involves building a piece of tissue outside of the body or assisting the damaged part of a tissue to grow again and function inside the body. Cells are the building blocks of the body, and they are surrounded by a matrix that supports them. This matrix is called the extracellular matrix (ECM). Scientists can make artificial mimics of the natural ECM. The artificial ECM helps a damaged tissue to regenerate. In this article, we discuss how Gel-MA, an artificial ECM, can have healing properties in injured brains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.