G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).
Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 cooperates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.
RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) is tightly regulated downstream of oncogenic pathways, and its dysregulation is a common feature in cancer. We evaluated CX-5461, the fi rst-in-class selective rDNA transcription inhibitor, in a fi rst-in-human, phase I dose-escalation study in advanced hematologic cancers. Administration of CX-5461 intravenously once every 3 weeks to 5 cohorts determined an MTD of 170 mg/m 2 , with a predictable pharmacokinetic profi le. The dose-limiting toxicity was palmar-plantar erythrodysesthesia; photosensitivity was a dose-independent adverse event (AE), manageable by preventive measures. CX-5461 induced rapid on-target inhibition of rDNA transcription, with p53 activation detected in tumor cells from one patient achieving a clinical response. One patient with anaplastic large cell lymphoma attained a prolonged partial response and 5 patients with myeloma and diffuse large B-cell lymphoma achieved stable disease as best response. CX-5461 is safe at doses associated with clinical benefi t and dermatologic AEs are manageable. SIGNIFICANCE: CX-5461 is a fi rst-in-class selective inhibitor of rDNA transcription. This fi rst-inhuman study establishes the feasibility of targeting this process, demonstrating single-agent antitumor activity against advanced hematologic cancers with predictable pharmacokinetics and a safety profi le allowing prolonged dosing. Consistent with preclinical data, antitumor activity was observed in TP53 wild-type and mutant malignancies.
CX-5461 is a G-quadruplex stabilizer that exhibits synthetic lethality in homologous recombination-deficient models. In this multicentre phase I trial in patients with solid tumors, 40 patients are treated across 10 dose levels (50–650 mg/m2) to determine the recommended phase II dose (primary outcome), and evaluate safety, tolerability, pharmacokinetics (secondary outcomes). Defective homologous recombination is explored as a predictive biomarker of response. CX-5461 is generally well tolerated, with a recommended phase II dose of 475 mg/m2 days 1, 8 and 15 every 4 weeks, and dose limiting phototoxicity. Responses are observed in 14% of patients, primarily in patients with defective homologous recombination. Reversion mutations in PALB2 and BRCA2 are detected on progression following initial response in germline carriers, confirming the underlying synthetic lethal mechanism. In vitro characterization of UV sensitization shows this toxicity is related to the CX-5461 chemotype, independent of G-quadruplex synthetic lethality. These results establish clinical proof-of-concept for this G-quadruplex stabilizer. Clinicaltrials.gov NCT02719977.
ObjectivesThis study aimed to examine the prevalence of frailty coding within the Dr Foster Global Comparators (GC) international database. We then aimed to develop and validate a risk prediction model, based on frailty syndromes, for key outcomes using the GC data set.DesignA retrospective cohort analysis of data from patients over 75 years of age from the GC international administrative data. A risk prediction model was developed from the initial analysis based on seven frailty syndrome groups and their relationship to outcome metrics. A weighting was then created for each syndrome group and summated to create the Dr Foster Global Frailty Score. Performance of the score for predictive capacity was compared with an established prognostic comorbidity model (Elixhauser) and tested on another administrative database Hospital Episode Statistics (2011-2015), for external validation.Setting34 hospitals from nine countries across Europe, Australia, the UK and USA.ResultsOf 6.7 million patient records in the GC database, 1.4 million (20%) were from patients aged 75 years or more. There was marked variation in coding of frailty syndromes between countries and hospitals. Frailty syndromes were coded in 2% to 24% of patient spells. Falls and fractures was the most common syndrome coded (24%). The Dr Foster Global Frailty Score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score had significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as comorbidity and chronological age. The score’s predictive capacity was higher in the elective group compared with non-elective, and may reflect improved performance in lower acuity states.ConclusionsFrailty syndromes can be coded in international secondary care administrative data sets. The Dr Foster Global Frailty Score significantly predicts key outcomes. This methodology may be feasibly utilised for case-mix adjustment for older persons internationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.