ObjectivesThis study aimed to examine the prevalence of frailty coding within the Dr Foster Global Comparators (GC) international database. We then aimed to develop and validate a risk prediction model, based on frailty syndromes, for key outcomes using the GC data set.DesignA retrospective cohort analysis of data from patients over 75 years of age from the GC international administrative data. A risk prediction model was developed from the initial analysis based on seven frailty syndrome groups and their relationship to outcome metrics. A weighting was then created for each syndrome group and summated to create the Dr Foster Global Frailty Score. Performance of the score for predictive capacity was compared with an established prognostic comorbidity model (Elixhauser) and tested on another administrative database Hospital Episode Statistics (2011-2015), for external validation.Setting34 hospitals from nine countries across Europe, Australia, the UK and USA.ResultsOf 6.7 million patient records in the GC database, 1.4 million (20%) were from patients aged 75 years or more. There was marked variation in coding of frailty syndromes between countries and hospitals. Frailty syndromes were coded in 2% to 24% of patient spells. Falls and fractures was the most common syndrome coded (24%). The Dr Foster Global Frailty Score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score had significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as comorbidity and chronological age. The score’s predictive capacity was higher in the elective group compared with non-elective, and may reflect improved performance in lower acuity states.ConclusionsFrailty syndromes can be coded in international secondary care administrative data sets. The Dr Foster Global Frailty Score significantly predicts key outcomes. This methodology may be feasibly utilised for case-mix adjustment for older persons internationally.
Cancer is a leading cause of death, accounting for almost 10 million deaths annually worldwide. Personalised therapies harnessing genetic and clinical information may improve survival outcomes and reduce the side effects of treatments. The aim of this study is to appraise published evidence on clinicopathological factors and genetic mutations (single nucleotide polymorphisms [SNPs]) associated with prognosis across 11 cancer types: lung, colorectal, breast, prostate, melanoma, renal, glioma, bladder, leukaemia, endometrial, ovarian. A systematic literature search of PubMed/MEDLINE and Europe PMC was conducted from database inception to July 1, 2021. 2497 publications from PubMed/MEDLINE and 288 preprints from Europe PMC were included. Subsequent reference and citation search was conducted and a further 39 articles added. 2824 articles were reviewed by title/abstract and 247 articles were selected for systematic review. Majority of the articles were retrospective cohort studies focusing on one cancer type, 8 articles were on pan-cancer level and 6 articles were reviews. Studies analysing clinicopathological factors included 908,567 patients and identified 238 factors, including age, gender, stage, grade, size, site, subtype, invasion, lymph nodes. Genetic studies included 210,802 patients and identified 440 gene mutations associated with cancer survival, including genes TP53, BRCA1, BRCA2, BRAF, KRAS, BIRC5. We generated a comprehensive knowledge base of biomarkers that can be used to tailor treatment according to patients’ unique genetic and clinical characteristics. Our pan-cancer investigation uncovers the biomarker landscape and their combined influence that may help guide health practitioners and researchers across the continuum of cancer care from drug development to long-term survivorship.
ObjectivesChallenges with manual methodologies to identify frailty, have led to enthusiasm for utilising large-scale administrative data, particularly standardised diagnostic codes. However, concerns have been raised regarding coding reliability and variability. We aimed to quantify variation in coding frailty syndromes within standardised diagnostic code fields of an international dataset.SettingPooled data from 37 hospitals in 10 countries from 2010 to 2014.ParticipantsPatients ≥75 years with admission of >24 hours (N=1 404 671 patient episodes).Primary and secondary outcome measuresFrailty syndrome groups were coded in all standardised diagnostic fields by creation of a binary flag if the relevant diagnosis was present in the 12 months leading to index admission. Volume and percentages of coded frailty syndrome groups by age, gender, year and country were tabulated, and trend analysis provided in line charts. Descriptive statistics including mean, range, and coefficient of variation (CV) were calculated. Relationship to in-hospital mortality, hospital readmission and length of stay were visualised as bar charts.ResultsThe top four contributors were UK, US, Norway and Australia, which accounted for 75.4% of the volume of admissions. There were 553 595 (39.4%) patient episodes with at least one frailty syndrome group coded. The two most frequently coded frailty syndrome groups were ‘Falls and Fractures’ (N=3 36 087; 23.9%) and ‘Delirium and Dementia’ (N=221 072; 15.7%), with the lowest CV. Trend analysis revealed some coding instability over the frailty syndrome groups from 2010 to 2014. The four countries with the lowest CV for coded frailty syndrome groups were Belgium, Australia, USA and UK. There was up to twofold, fourfold and twofold variation difference for outcomes of length of stay, 30-day readmission and inpatient mortality, respectively, across the countries.ConclusionsVariation in coding frequency for frailty syndromes in standardised diagnostic fields are quantified and described. Recommendations are made to account for this variation when producing risk prediction models.
BACKGROUND The impact of the COVID-19 pandemic on health care utilisation and associated costs has been significant, with one in ten patients becoming severely ill and being admitted to hospital with serious complications during the first wave of the pandemic. Risk prediction models can help health care providers identify high-risk patients in their populations and intervene to improve health outcomes and reduce associated costs. OBJECTIVE To develop and validate a hospitalisation risk prediction model for adult patients with laboratory confirmed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS The model was developed using pre-linked and standardised data of adult patients with laboratory confirmed SARS-CoV-2 from Cerner’s population health management platform (HealtheIntent®) in the London Borough of Lewisham. A total of 14,203 patients who tested positive for SARS-CoV-2 between 1st March 2020 and 28th February 2021 were included in the development and internal validation cohorts. A second temporal validation cohort covered the period between 1st March 2021 to 30th April 2021. The outcome variable was hospital admission in adult patients with laboratory confirmed SARS-CoV-2. A generalised linear model was used to train the model. The predictive performance of the model was assessed using the area under the receiver operator characteristic curve (ROC-AUC). RESULTS Overall, 14,203 patients were included. Of those, 9,755 (68.7%) were assigned to the development cohort, 2,438 (17.2%) to the internal validation cohort, and 2,010 (14.1%) to the temporal validation cohort. A total of 917 (9.4%) patients were admitted to hospital in the development cohort, 210 (8.6%) in the internal validation cohort, and a further 204 (10.1%) in the temporal validation cohort. The model had a ROC-AUC of 0.85 in both the development and validation cohorts. The most predictive factors were older age, male sex, Asian or Other ethnic minority background, obesity, chronic kidney disease, hypertension and diabetes. CONCLUSIONS The COVID-19 hospitalisation risk prediction model demonstrated very good performance and can be used to stratify risk in the Lewisham population to help providers reduce unnecessary hospital admissions and associated costs, improve patient outcomes, and target those at greatest risk to ensure full vaccination against SARS-CoV-2. Further research may examine the external validity of the model in other populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.