Packages with the Modified Daisy-chain (MDC) die have been used increasingly to accelerate reliability stress testing of IC packaging during package development, qualification, and evaluation and reliability monitor programs [1]. Utilizing this approach in essence eliminates chip circuit failure mechanisms. Unlike packages with active die, in packages with the MDC die, when short occurred between two daisy-chain pairs of I/Os, there are four possibilities that can attribute to each pin of the two daisy-chain pairs. That makes the isolation of short failure difficult. Time Domain Reflectometry (TDR) is a well-described technique to characterize package discontinuity (open or short failure). By using a bare package substrate and a reference device, an analyst can characterize the discontinuity and localize it: within the package, the die-package interconnects, or on the die [2]. Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields generated by current. The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects [3]. In this paper, a new methodology that combines Resistance Analysis, TDR Isolation and SSM Identification for electrical debugging short in packages with the MDC die will be presented. Case studies will also be discussed.
This paper describes a method to "non-destructively" inspect the bump side of an assembled flip-chip test die. The method is used in conjunction with a simple metal-connecting "modified daisy chain" die and makes use of the fact that polished silicon is transparent to infra-red (IR) light. The paper describes the technique, scope of detection and examples of failure mechanisms successfully identified. It includes an example of a shorting anomaly that was not detectable with the state of the art X-ray equipment, but was detected by an IR emission microscope. The anomalies, in many cases, have shown to be the cause of failure. Once this has been accomplished, then a reasonable deprocessing plan can be instituted to proceed with the failure analysis.
Failure analysis laser inspection tool (FA/LIT) is a tool for the analysis of packaged devices. FA/LIT can routinely expose bond wires for inspection; however, concerns develop for the exposure of stitch bonds, the examination of small trace cracks, and any requirements to maintain electrical functionality of devices. Matching the FA/LIT settings based upon operation and sample material is critical in achieving good exposure of areas of interest with minimal damage. The use of practice samples, or areas away from the area of interest, to verify results before operations on actual FA parts is strongly recommended in this article. The installation of a grounded sample holder has been shown to greatly improve electrical integrity of samples during the laser ablation procedure. Use of the grounding sample holder improved electrical test results from 0% pass to 100% pass in advanced CMOS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.