Chemical and physical processes driven by multiphoton absorption make possible the fabrication of complex, 3D structures with feature sizes as small as 100 nm. Since its inception less than a decade ago, the field of multiphoton fabrication has progressed rapidly, and multiphoton techniques are now being used to create functional microdevices. In this Review we discuss the techniques and materials used for multiphoton fabrication, the applications that have been demonstrated, as well as those being pursued. We also consider the outlook for this field, both in the laboratory and in industrial settings.
In conventional photolithography, diffraction limits the resolution to about one-quarter of the wavelength of the light used. We introduce an approach to photolithography in which multiphoton absorption of pulsed 800-nanometer (nm) light is used to initiate cross-linking in a polymer photoresist and one-photon absorption of continuous-wave 800-nm light is used simultaneously to deactivate the photopolymerization. By employing spatial phase-shaping of the deactivation beam, we demonstrate the fabrication of features with scalable resolution along the beam axis, down to a 40-nm minimum feature size. We anticipate application of this technique for the fabrication of diverse two- and three-dimensional structures with a feature size that is a small fraction of the wavelength of the light employed.
Not all nanopores are created equal. By definition, nanopores have characteristic diameters or conduit widths between ∼1 and 100 nm. However, the narrowest of such pores, perhaps best called Single Digit Nanopores (SDNs) and defined as those with regular diameters less than 10 nm, have only recently been accessible experimentally for precision transport measurements. This Review summarizes recent experiments on pores in this size range that yield surprising results, pointing toward extraordinary transport efficiencies and selectivities for SDN systems. These studies have identified critical gaps in our understanding of nanoscale hydrodynamics, molecular sieving, fluidic structure, and thermodynamics. These knowledge gaps are, in turn, an opportunity to discover and understand fundamentally new mechanisms of molecular and ionic transport at the nanometer scale that may inspire a host of new technologies, from novel membranes for separations and water purification to new gas-permeable materials and energy storage devices. Here we highlight seven critical knowledge gaps in the study of SDNs and identify the need for new approaches to address these topics.
We demonstrate that highly efficient photoluminescence is generated from gold nanoparticles as small as a few nanometers in diameter upon irradiation with sub-100-fs pulses of 790-nm light. Strong emission is observed at excitation intensities comparable to or less than those typically used for multiphoton imaging of fluorescently labeled biological samples. The particles have polarized emission, can radiate more efficiently than single molecules, do not exhibit significant blinking, and are photostable under hours of continuous excitation. These observations suggest that metal nanoparticles are a viable alternative to fluorophores or semiconductor nanoparticles for biological labeling and imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.