This study aimed to understand the role of the matrix polysaccharide, hyaluronan (HA), in influencing the scarring process by assessing its impact on regulating fibroblast behavior. Donormatched human oral and dermal fibroblasts were used as models of nonscarring and scarring fibroblast phenotypes, respectively. Phenotypic differences in these two fibroblast populations were assessed and related to differences in HA synthesis and assembly. The two fibroblast populations showed intrinsic differences in their response to the profibrotic cytokine, transforming growth factor- 1 (TGF 1 ), in that oral fibroblasts were resistant to TGF 1 -driven myofibroblastic differentiation. In dermal fibroblasts, differentiation was associated with an induction of HA synthase (HAS1 and HAS2) transcription and assembly of pericellular HA coats. In comparison, resistance to differentiation in oral fibroblasts was associated with failure of induction of HAS1 and HAS2 transcription and failure of pericellular coat assembly. Furthermore, inhibition of HA synthesis in dermal fibroblasts significantly attenuated TGF 1 -mediated differentiation. Interleukin-1 stimulation resulted in induction of HAS1 and HAS2 transcription but did not induce phenotypic differentiation or induce HA coat assembly. In addition, neither overexpression nor down-regulation of HAS1 (the isoform uniquely deficient in nonscarring oral fibroblasts) influenced phenotypic differentiation. In conclusion, inhibiting HA synthesis modulates TGF 1 -dependent responses in these cells preventing fibroblast to myofibroblast differentiation. Moreover, HA pericellular coat assembly, rather than HAS isoform expression, appears to be associated with phenotypic differentiation.
Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization.
Low back pain is a significant socioeconomic burden and intervertebral disc degeneration has been implicated as a cause. A reliable animal model of disc degeneration is necessary to evaluate therapeutics, and functional metrics are essential to quantify their benefit. To this end, needle puncture injuries were created in the caudal intervertebral discs of mice to induce disc degeneration. Compression, torsion, and creep mechanics were assessed both immediately and after eight weeks to distinguish between the effects of injury and the subsequent reparative or degenerative response. Two needle sizes (29 and 26 gauge) were used to determine injury sizedependence. Compressive stiffness (62%), torsional stiffness (60%), and early damping stiffness (84%) decreased immediately after injury with the large needle (26G). These mechanical properties did not change over time despite structural and compositional changes. At 8 weeks following large needle injury, disc height decreased (37%), nucleus pulposus (NP) glycosaminoglycan content decreased (41%), and NP collagen content increased (45%). The small needle size had no significant effect on mechanics and did not initiate degenerative changes in structure and composition. Thus, the injection of therapeutics into the NP with a minimal needle size may limit damage due to the needle insertion. These findings, along with the wide commercial availability of mouse-specific biological probes, indicate that the mouse caudal disc model can be a powerful tool for investigating disc degeneration and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.