A 2 year feeding study was conducted with male and female B6C3F1 mice that consumed diets containing 0, 1, 5, or 10 ppm deoxynivalenol (DON). Survivability was good and, while the test animals gained less weight with increasing levels of DON in the diet, there were no consistent toxic manifestations associated with DON consumption. There was some evidence for an increase in serum IgA and IgG in females, and there were sporadic changes noted in the clinical chemistry and hematology parameters conducted at the terminal sacrifice. However, these changes were not considered to be biologically significant. The pathology results provided statistically significant dose-related evidence for a decrease in liver preneoplastic and neoplastic lesions as the dose level of DON increased. This negative trend probably results from the known positive correlation between body weight and the appearance of spontaneous hepatic neoplasms in this strain of mouse.
A recent outbreak of human food poisoning, characterized by severe gastrointestinal and neurologic abnormalities, with a fatal outcome in 3 patients, was attributed to the consumption of poisonous mussels containing domoic acid at an abnormally high concentration. The purpose of the present study was to determine if domoic acid, a glutamate analogue extracted from poisonous mussel, was neurotoxic to rats. Groups of female Sprague-Dawley rats were dosed once intraperitoneally with 0, 1, 2, 4, or 7.5 mg domoic acid/kg of body weight and observed for a maximum period of 24 hr. Clinically, control rats and rats in the 1 mg/kg group were unremarkable. Seventy-five percent of the animals in the 2 mg/kg group had equivocal transient behavioral signs. One that was given 2 mg/kg and all rats given in excess of 4 mg/kg of body weight developed unequivocal behavioral and neurologic signs culminating in partial seizures and status epilepticus. Histopathologically, severely affected rats developed selective encephalopathy characterized by neuronal degeneration and vacuolation of the neuropil in the limbic and the olfactory systems, and retinopathy characterized by neuronal hydropic degeneration of the inner nuclear layer and vacuolation of the external plexiform layer. The results of this study suggest that domoic acid is excitotoxic and causes a characteristic syndrome with clinical signs and histopathologic lesions similar to those reported for kainic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.