We present a completely new approach to quantum circuit optimisation, based on the ZX-calculus. We first interpret quantum circuits as ZX-diagrams, which provide a flexible, lower-level language for describing quantum computations graphically. Then, using the rules of the ZX-calculus, we give a simplification strategy for ZX-diagrams based on the two graph transformations of local complementation and pivoting and show that the resulting reduced diagram can be transformed back into a quantum circuit. While little is known about extracting circuits from arbitrary ZX-diagrams, we show that the underlying graph of our simplified ZX-diagram always has a graph-theoretic property called generalised flow, which in turn yields a deterministic circuit extraction procedure. For Clifford circuits, this extraction procedure yields a new normal form that is both asymptotically optimal in size and gives a new, smaller upper bound on gate depth for nearest-neighbour architectures. For Clifford+T and more general circuits, our technique enables us to to `see around' gates that obstruct the Clifford structure and produce smaller circuits than naïve `cut-and-resynthesise' methods.
We present a method for reducing the number of non-Clifford quantum gates, in particularly T-gates, in a circuit, an important task for efficiently implementing fault-tolerant quantum computations. This method matches or beats previous approaches to ancillae-free T-count reduction on the majority of our benchmark circuits, in some cases yielding up to 50% improvement. Our method begins by representing the quantum circuit as a ZX-diagram, a tensor networklike structure that can be transformed and simplified according to the rules of the ZX-calculus. We then extend a recent simplification strategy with a different ingredient, phase gadgetization, which we use to propagate non-Clifford phases through a ZX-diagram to find nonlocal cancellations. Our procedure extends unmodified to arbitrary phase angles and to parameter elimination for variational circuits. Finally, our optimization is self-checking, in the sense that the simplification strategy we propose is powerful enough to independently validate equality of the input circuit and the optimized output circuit. We have implemented the routines of this paper in the open-source library PyZX.
Translations between the quantum circuit model and the measurement-based one-way model are useful for verification and optimisation of quantum computations. They make crucial use of a property known as gflow. While gflow is defined for one-way computations allowing measurements in three different planes of the Bloch sphere, most research so far has focused on computations containing only measurements in the XY-plane. Here, we give the first circuit-extraction algorithm to work for one-way computations containing measurements in all three planes and having gflow. The algorithm is efficient and the resulting circuits do not contain ancillae. One-way computations are represented using the ZX-calculus, hence the algorithm also represents the most general known procedure for extracting circuits from ZX-diagrams. In developing this algorithm, we generalise several concepts and results previously known for computations containing only XY-plane measurements. We bring together several known rewrite rules for measurement patterns and formalise them in a unified notation using the ZX-calculus. These rules are used to simplify measurement patterns by reducing the number of qubits while preserving both the semantics and the existence of gflow. The results can be applied to circuit optimisation by translating circuits to patterns and back again.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.