Oxazolidinones make up a relatively new class of antimicrobial agents which possess a unique mechanism of bacterial protein synthesis inhibition. U-100592 (S)-N-[[3-[3-fluoro-4-[4-(hydroxyacetyl)-1-piperazinyl]- phenyl]-2-oxo-5-oxazolidinyl]methyl]-acetamide and U-100766 (S)-N-[[3-[3-fluoro-4-(4-morpholinyl)phenyl]- 2-oxo-5-oxazolidinyl]methyl]-acetamide are novel oxazolidinone analogs from a directed chemical modification program. MICs were determined for a variety of bacterial clinical isolates; the respective MICs of U-100592 and U-100766 at which 90% of isolates are inhibited were as follows: methicillin-susceptible Staphylococcus aureus, 4 and 4 micrograms/ml; methicillin-resistant S. aureus, 4 and 4 micrograms/ml; methicillin-susceptible Staphylococcus epidermidis, 2 and 2 micrograms/ml; methicillin-resistant S. epidermidis, 1 and 2 micrograms/ml; Enterococcus faecalis, 2 and 4 micrograms/ml; Enterococcus faecium, 2 and 4 micrograms/ml; Streptococcus pyogenes, 1 and 2 micrograms/ml; Streptococcus pneumoniae, 0.50 and 1 microgram/ml; Corynebacterium spp., 0.50 and 0.50 micrograms/ml; Moraxella catarrhalis, 4 and 4 micrograms/ml; Listeria monocytogenes, 8 and 2 micrograms/ml; and Bacteroides fragilis, 16 and 4 micrograms/ml. Most strains of Mycobacterium tuberculosis and the gram-positive anaerobes were inhibited in the range of 0.50 to 2 micrograms/ml. Enterococcal strains resistant to vancomycin (VanA, VanB, and VanC resistance phenotypes), pneumococcal strains resistant to penicillin, and M. tuberculosis strains resistant to common antitubercular agents (isoniazid, streptomycin, rifampin, ethionamide, and ethambutol) were not cross-resistant to the oxazolidinones. The presence of 10, 20, and 40% pooled human serum did not affect the antibacterial activities of the oxazolidinones. Time-kill studies demonstrated a bacteriostatic effect of the analogs against staphylococci and enterococci but a bactericidal effect against streptococci. The spontaneous mutation frequencies of S. aureus ATCC 29213 were <3.8 x 10(-10) and <8 x 10(-11) for U-100592 and U-100766, respectively. Serial transfer of three staphylococcal and two enterococcal strains on drug gradient plates produced no evidence of rapid resistance development. Thus, these new oxazolidinone analogs demonstrated in vitro antibacterial activities against a variety of clinically important human pathogens.
Coherent speckle is a source of image noise in ultrasonic B-mode imaging. The use of multiple imaging frequencies has been suggested as a technique for speckle contrast reduction. This technique involves the averaging of images whose speckle patterns have been modified by a change in the spectrum of the transmitted or received acoustical pulse. We have measured the rate of this speckle pattern change in ultrasonic images as a function of the change in center frequency of the transmitted acoustical pulse. This data is used to quantitatively describe the trade-off of resolution loss versus speckle reduction encountered when frequency compounding is employed and to derive the optimal method of frequency compounding. These results are then used as a basis for describing the overall advisability of frequency compounding in ultrasonic imaging systems. Our analysis indicates that simple frequency compounding is counterproductive in improving image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.