N epsilon-(carboxymethyl)lysine, N epsilon-(carboxymethyl)hydroxylysine, and the fluorescent cross-link pentosidine are formed by sequential glycation and oxidation reactions between reducing sugars and proteins. These compounds, termed glycoxidation products, accumulate in tissue collagen with age and at an accelerated rate in diabetes. Although glycoxidation products are present in only trace concentrations, even in diabetic collagen, studies on glycation and oxidation of model proteins in vitro suggest that these products are biomarkers of more extensive underlying glycative and oxidative damage to the protein. Possible sources of oxidative stress and damage to proteins in diabetes include free radicals generated by autoxidation reactions of sugars and sugar adducts to protein and by autoxidation of unsaturated lipids in plasma and membrane proteins. The oxidative stress may be amplified by a continuing cycle of metabolic stress, tissue damage, and cell death, leading to increased free radical production and compromised free radical inhibitory and scavenger systems, which further exacerbate the oxidative stress. Structural characterization of the cross-links and other products accumulating in collagen in diabetes is needed to gain a better understanding of the relationship between oxidative stress and the development of complications in diabetes. Such studies may lead to therapeutic approaches for limiting the damage from glycation and oxidation reactions and for complementing existing therapy for treatment of the complications of diabetes.
Oxidative stress and oxidative damage to tissues are common end points of chronic diseases, such as atherosclerosis, diabetes, and rheumatoid arthritis. The question addressed in this review is whether increased oxidative stress has a primary role in the pathogenesis of diabetic complications or whether it is a secondary indicator of end-stage tissue damage in diabetes. The increase in glycoxidation and lipoxidation products in plasma and tissue proteins suggests that oxidative stress is increased in diabetes. However, some of these products, such as 3-deoxyglucosone adducts to lysine and arginine residues, are formed independent of oxidation chemistry. Elevated levels of oxidizable substrates may also explain the increase in glycoxidation and lipoxidation products in tissue proteins, without the necessity of invoking an increase in oxidative stress. Further, age-adjusted levels of oxidized amino acids, a more direct indicator of oxidative stress, are not increased in skin collagen in diabetes. We propose that the increased chemical modification of proteins by carbohydrates and lipids in diabetes is the result of overload on metabolic pathways involved in detoxification of reactive carbonyl species, leading to a general increase in steady-state levels of reactive carbonyl compounds formed by both oxidative and nonoxidative reactions. The increase in glycoxidation and lipoxidation of tissue proteins in diabetes may therefore be viewed as the result of increased carbonyl stress. The distinction between oxidative and carbonyl stress is discussed along with the therapeutic implications of this difference.
Aims/hypothesis. The accumulation of AGE is thought to play a role in the pathogenesis of chronic complications of diabetes mellitus and renal failure. All current measurements of AGE accumulation require invasive sampling. We exploited the fact that several AGE exhibit autofluorescence to develop a non-invasive tool for measuring skin AGE accumulation, the Autofluorescence Reader (AFR). We validated its use by comparing the values obtained using the AFR with the AGE content measured in extracts from skin biopsies of diabetic and control subjects. Methods. Using the AFR with an excitation light source of 300-420 nm, fluorescence of the skin was measured at the arm and lower leg in 46 patients with diabetes (Type 1 and 2) and in 46 age-and sexmatched control subjects, the majority of whom were Caucasian. Autofluorescence was defined as the average fluorescence per nm over the entire emission spectrum (420-600 nm) as ratio of the average fluorescence per nm over the 300-420-nm range. Skin biopsies were obtained from the same site of the arm, and analysed for collagen-linked fluorescence (CLF) and specific AGE: pentosidine, N ε -(carboxymethyl)-lysine (CML) and N ε -(carboxyethyl)lysine (CEL).Results. Autofluorescence correlated with CLF, pentosidine, CML, and CEL (r=0.47-0.62, p≤0.002). In 32 of 46 diabetic patients (70%), autofluorescence values were above the 95% CI of the mean value in control subjects, and correlated with age, diabetes duration, mean HbA 1 c of the previous year and creatinine levels. Conclusions/interpretation. The AFR offers a simple alternative to invasive measurement of AGE accumulation and, to date, has been validated in non-pigmented skin. The AFR may prove to be a useful clinical tool for rapid risk assessment of AGE-related long-term complications in diabetes mellitus and in other conditions associated with AGE accumulation.
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% D-Asp, a measure of the residence time of a protein). AGE (N ⑀ -(carboxymethyl)lysine, N ⑀ -(carboxyethyl)lysine, and pentosidine) and % D-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % D-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % D-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % D-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % D-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.Nonenzymatic glycation is a post-translational modification of proteins in vivo, which is initiated by the spontaneous reaction of sugars with lysine residues in proteins and eventually results in the formation of advanced glycation end products (AGEs), 1 such as N ⑀ -(carboxymethyl)lysine (CML), N ⑀ -(carboxyethyl)lysine (CEL), and pentosidine (1-3). Because AGEs are irreversible chemical modifications of protein, they accumulate with age in long lived proteins such as lens crystallins and tissue collagens (1, 3-9). Because collagen molecules in articular cartilage have an exceptionally long lifetime (Ͼ100 years) (10, 11), they are highly susceptible to the accumulation of AGEs. Indeed, in comparison to other collagen-rich tissues (such as skin), articular cartilage contains relatively high amounts of pentosidine (3, 12). Although differences in AGE levels between different proteins have been attributed to differences in protein turnover rates (3,(12)(13)(14), no quantitative evidence to support this assumption is available.To compare protein turnover rates, information on the residence time of a protein in tissue can be obtained from the racemization of aspartic acid. Amino acids are incorporated into peptides and proteins as the L-enantiomers. During aging, racemization slowly converts the L-form into a race...
N⑀ -(Carboxymethyl)lysine (CML) is an advanced glycation end product formed on protein by combined nonenzymatic glycation and oxidation (glycoxidation) reactions. We now report that CML is also formed during metal-catalyzed oxidation of polyunsaturated fatty acids in the presence of protein. During copper-catalyzed oxidation in vitro, the CML content of low density lipoprotein increased in concert with conjugated dienes but was independent of the presence of the Amadori compound, fructoselysine, on the protein. CML was also formed in a time-dependent manner in RNase incubated under aerobic conditions in phosphate buffer containing arachidonate or linoleate; only trace amounts of CML were formed from oleate. After 6 days of incubation the yield of CML in RNase from arachidonate was ϳ0.7 mmol/mol lysine compared with only 0.03 mmol/mol lysine for protein incubated under the same conditions with glucose. Glyoxal, a known precursor of CML, was also formed during incubation of RNase with arachidonate. These results suggest that lipid peroxidation, as well as glycoxidation, may be an important source of CML in tissue proteins in vivo and that CML may be a general marker of oxidative stress and long term damage to protein in aging, atherosclerosis, and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.