In summer 2000, adult female bollworm moths, Helicoverpa zea (Boddie), were collected from light-traps at four locations near the Tidewater Research Station, Plymouth, NC. Female moths were allowed to lay eggs, and at hatch, 72 larvae from each female were screened for growth rate on normal artificial diet and on diets containing 5.0 microg of either Cry1Ac or Cry2Aa Bt toxin per milliliter of diet. The growth rate bioassays were performed to isolate nonrecessive Bt resistance genes present in field populations of bollworm. We found one individual out of 583 screened that appeared to carry a major gene for resistance to Cry1Ac. Assuming four alleles per individual, the gene frequency is 1/2332 or 0.0003. Other females appeared to have minor genes for Cry1Ac resistance or major genes with lower levels of dominance. We also found one individual out of 646 screened that appeared to carry a major gene for resistance to Cry2Aa. The gene frequency for Cry2Aa resistance was estimated at 1/2584 or 0.00039. Again, other females seemed to carry additional minor resistance genes. Along with other results that indicate partially dominant inheritance of Cry1Ac resistance in bollworm, these allele frequency estimates are important for determining the rate of resistance evolution in H. zea to specific Bt toxins.
The effect of insecticides on Trichogramma exiguum Pinto & Platner emergence, adult survival, and fitness parameters was investigated. Insecticides tested were lambda cyhalothrin, cypermethrin, thiodicarb, profenophos, spinosad, methoxyfenozide, and tebufenozide. All insecticides, with the exception of methoxyfenozide and tebufenozide, adversely affected Trichogramma emergence from Helicoverpa zea (Boddie) host eggs when exposed at different preimaginal stages of development (larval, prepupal, or pupal). Regardless of the developmental stage treated, none of the insecticides tested had a significant effect on the sex ratio or frequency of brachyptery of emerged females. However, the mean life span of emerged T. exiguum females significantly varied among insecticide treatments, and was significantly affected by the developmental stage of parasitoid when treated. Based on LC50 values, spinosad and prophenofos were the most toxic compounds to female T. exiguum adults, followed by lambda cyhalothrin, cypermethrin, and thiodicarb. Insecticides field-weathered for four to 6 d on cotton leaves showed no activity against female T. exiguum adults.
Transgenic varieties of field corn that express the CrylAb B. thuringiensis (Bt) toxin in ear tissue present the potential of reducing ear feeding by the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae), and for reducing the size of populations of the insect infesting other host crops. Life history parameters of H. zea feeding on ears of conventional and Bt field corn varieties were measured in field plots in eastern North Carolina in 1997 and 1998. Transformation events investigated were Mon-810 and Bt-11. Bt corn was found to cause a steady mortality of larvae during development, but permitted approximately 15-40% survival to the prepupal stage compared with non-Bt corn. Mortality of prepupae and pupae from Bt corn was also higher than from non-Bt corn, reducing overall adult production by 65-95%. The larvae that did survive grew more slowly on Bt than on non-Bt corn, and produced pupae that weighed 33% less. Pupation and adult eclosion were delayed by 6-10 d by feeding on Bt corn ears. Corn varieties expressing Bt in ear tissue have the potential to reduce H. zea ear feeding by up to 80%, and the potential to reduce populations emerging from ear-stage corn fields to infest cotton, soybean and other crops by around 75%. To have a measurable effect on area-wide populations, Bt corn varieties would need to be planted in large proportions of corn fields. Extensive planting of varieties such as those tested here, having only moderate effects on H. zea, would raise concerns about rapid evolution of resistance.
A simulation model is developed to examine the role of spatial processes in the evolution of resistance in Helicoverpa zea populations to Bt corn and Bt cotton. The model is developed from the stochastic spatially explicit Heliothis virescens model described by Peck et al. (1999), to accommodate a spatial mix of two host crops (corn and cotton), and to reflect the agronomic practices, as well as the spatial and temporal population dynamics of H. zea, in eastern North Carolina. The model suggests that selection for resistance is more intense in Bt cotton fields than in Bt corn fields. It further suggests that local gene frequencies are highly dependent on local deployment levels of Bt crops despite the high mobility of the adult insects. Region-wide average gene frequencies depend on the region-wide level of Bt deployment, so incomplete technology adoption slows the rate of resistance evolution. However, on a local scale, H. zea populations in clusters of fields in which Bt use is high undergo far more rapid evolution than populations in neighboring clusters of fields in which Bt use is low. The model suggests that farm-level refuge requirements are important for managing the risk of resistance. The model can be used as an aid in designing plans for monitoring for resistance by suggesting the appropriate distribution of monitoring locations, which should focus on areas of highest Bt crop deployment. The findings need to be placed in the context of the input parameters, many of which are uncertain or highly variable in nature, and therefore, a thorough sensitivity analysis is warranted.
One susceptible and three Cry1Ac-resistant strains of tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), were used in laboratory studies to determine the level of cross-resistance between the Bacillus thuringiensis (Berliner) toxins Cry1Ac and Vip3A by using concentration-mortality and leaf tissue experiments. Concentration-mortality data demonstrated that the three Cry1Ac-resistant H. virescens strains, YHD2, KCBhyb, and CxC, were at least 215- to 316-fold resistant to Cry1Ac compared with the susceptible strain, YDK. Results from Vip3A concentration-mortality tests indicated that mortality was similar among all four H. virescens strains. Relative larval growth on Cry1Ac reflected concentration-mortality test results, because YHD2 larval growth was mostly unaffected by the Cry1Ac concentrations tested. Growth ratios for KCBhyb and CXC indicated that they had a more moderate level of resistance to Cry1Ac than did YHD2. Relative larval growth on Vip3A was highly variable at lower concentrations, but it was more consistent on concentrations of Vip3A above 25 microg/ml. Differences in larval growth among strains on Vip3A were not as pronounced as seen in Cry1Ac experiments. Mortality and larval growth also was assessed in leaf tissue bioassays in which YDK, CxC, and KCBhyb neonates were placed onto leaf disks from non-Bt and Bt cotton, Gossypium hirsutum L., for 5 d. Three Bt lines were used in an initial bioassay and consisted of two Vip3A-containing lines, COT203 and COT102, and a Cry1Ac-producing line. Mortality of KCBhyb and CXC was lower than that of YDK larvae in the presence of leaf tissue from the Cry1Ac-producing line. Additionally, increased larval growth and leaf tissue consumption on Cry1Ac-containing leaf disks was observed for KCBhyb and CXC. Mortality and larval weights were similar among strains when larvae were fed leaf tissue of either non-Bt, COT203, or COT102. A subsequent leaf tissue bioassay was conducted that evaluated four cotton lines: non-Bt, Cry1Ab-expressing, Vip3A-expressing, and pyramided-toxin plants that produced both Cry1Ab and Vip3A. Mortality levels were similar among strains when fed non-Bt, Vip3A-expressing, or pyramided-toxin leaf tissues. Mortality was higher for YDK than for KCBhyb or CXC on Cry1Ab-expressing leaf tissues. No differences in larval weights were observed among strains for any genotype tested. Results of these experiments demonstrate that cross-resistance is nonexistent between CrylAc and Vip3A in H. virescens. Thus, the introduction of Vip3A-producing lines could delay Cry1Ac-resistance evolution in H. virescens, if these lines gain a significant share of the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.