We performed density functional theory calculations with self-consistent van der Waals corrected exchange-correlation (XC) functionals to capture the structure of black phosphorus and twelve monochalcogenide monolayers and find the following results: (a) The in-plane unit cell changes its area in going from the bulk to a monolayer. The change of in-plane distances implies that bonds weaker than covalent or ionic ones are at work within the monolayers themselves. This observation is relevant for the prediction of the critical temperature Tc. (b) There is a hierarchy of independent parameters that uniquely define a ground state ferroelectric unit cell (and square and rectangular paraelectric unit cells as well): only 5 optimizable parameters are needed to establish the unit cell vectors and the four basis vectors of the ferroelectric ground state unit cell, while square and rectangular paraelectric structures are defined by only 3 or 2 independent optimizable variables, respectively. (c) The reduced number of independent structural variables correlates with larger elastic energy barriers on a rectangular paraelectric unit cell when compared to the elastic energy barrier of a square paraelectric structure. This implies that Tc obtained on a structure that keeps the lattice parameters fixed (for example, using an NVT ensemble) should be larger than the transition temperature on a structure that is allowed to change in-plane lattice vectors (for example, using the NPT ensemble). (d) The dissociation energy (bulk cleavage energy) of these materials is similar to the energy required to exfoliate graphite and MoS2. (e) There exists a linear relation among the square paraelectric unit cell lattice parameter and the lattice parameters of the rectangular ferroelectric ground state unit cell. These results highlight the subtle atomistic structure of these novel 2D ferroelectrics.
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal‐line fermions. In this material family, the LnSbTe (Ln = lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal‐line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.