Stocking programs using hatchery-reared salmon are often implemented for augmenting natural populations. However, survival of these fish is often low compared with wild conspecifics, possibly because of genetic, physiological, and behavioural deficiencies. Here, we compared presmolt Atlantic salmon (Salmo salar) from three different environmental treatments (barren environment, plastic tube enrichment, and plastic shredding enrichment) with regard to plasma cortisol levels, shelter-seeking behaviour, and fin deterioration. Basal plasma cortisol levels were higher in barren-reared fish, indicating higher stress levels, while no differences were found in acute cortisol response after a 30 min confinement test. Shelter-seeking was higher in salmon reared in enriched tanks when tested alone, but not when tested in small groups. Barren-reared fish had higher levels of fin deterioration over winter, potentially owing to higher aggression levels. These results suggest that enrichment can reduce the impact of stressors experienced in the hatchery and thus increase fish welfare. Tank enrichment may also be used to produce salmon better adapted for the more complex environment encountered after release.
Conservation of migratory salmonids requires understanding their ecology at multiple scales, combined with assessing anthropogenic impacts. We present a case‐study from over 100 years of data for the endemic landlocked Atlantic salmon (Salmo salar, Salmonidae) and brown trout (Salmo trutta, Salmonidae) in Lake Vänern, Sweden. We use this case‐study to develop life history‐based research and monitoring priorities for migratory salmonids. In Vänern, small wild populations of salmon and trout remain only in the heavily regulated Rivers Klar (Klarälven) and Gullspång (Gullspångsälven), and commercial and sport fisheries are maintained by hatchery stocking. These populations represent some of the last remaining large‐bodied (up to 20 kg) landlocked salmon stocks worldwide. We found that one of four stocks of wild fish has increased since 1996; the other three remain critically low. Hatchery return rates for three of four stocks appear stable at roughly 1% and annual fisheries catch is roughly 75 metric tons, with an estimated 7.5% of hatchery smolts being recruited to the fishery; this also appears relatively stable since 1990. Our analysis reveals much uncertainty in key data requirements, including both river return and fisheries catch rates, estimates of wild smolt production and survival, and hatchery breeding and genetics protocols. These uncertainties, coupled with a lack of information on their riverine and lacustrine ecology, preclude effective management of these unique populations. We conclude with a framework for a life history‐based approach to research and monitoring for Vänern salmon and trout, which should be applicable for all endemic, migratory salmonid populations.
Relatively little is known about the downstream migration of landlocked stocks of Atlantic salmon Salmo salar L. smolts, as earlier migration studies have generally focused on upstream migration. However, in watersheds with many hydroelectric plants (HEPs), multiplicative loss of downstream‐migrating salmon smolts can be high, contributing to population declines or extirpations. Here we report the results from a study of wild landlocked Atlantic salmon smolts in the River Klarälven. Salmon smolts, tagged with acoustic transmitters, were released at different locations and followed as they passed 37 receivers along a 180‐km‐long river segment, including eight dams as well as free‐flowing control stretches. We found that 16% of the smolts successfully migrated along the entire river segment. Most losses occurred during HEP passages, with 76% of the smolts being lost during these passages, which contrasts with the 8% smolt loss along unregulated control stretches. Migration speed was 83% slower along regulated stretches than along unregulated stretches. The observed lower migration speed at regulated stretches was dependent on fish size, with large fish moving slower than small fish. Discharge affected migration speed but not losses. As previously shown for anadromous populations, our study of landlocked salmon demonstrates similar negative effects of multiple passages of HEPs by downstream‐migrating smolts. On the basis of this and previous migration studies, we advocate using a holistic approach in the management and conservation of migratory fish in regulated rivers, which includes safe passage for both upstream‐ and downstream‐migrating fish. Copyright © 2012 John Wiley & Sons, Ltd.
The migratory behaviour of hatchery-reared landlocked Atlantic salmon Salmo salar raised under three different feeding regimes was monitored through the lower part of the River Klarälven, Sweden. The smolts were implanted with acoustic transmitters and released into the River Klarälven, 25 km upstream of the outlet in Lake Vänern. Early mature males, which had matured the previous autumn, were also tagged and released. To monitor migration of the fish, acoustic receivers were deployed along the migratory route. The proportion of S. salar that reached Lake Vänern was significantly greater for fish fed fat-reduced feed than for fish given rations with higher fat content, regardless of ration size. Fish from the early mature male group remained in the river to a greater extent than fish from the three feeding regimes. Smolt status (degree of silvering), as visually assessed, did not differ among the feeding regime groups, and moreover, fully-silvered fish, regardless of feeding regime, migrated faster and had a greater migration success than fish with less developed smolt characteristics. Also, successful migrants had a lower condition factor than unsuccessful ones. These results indicate that the migration success of hatchery-reared S. smolts released to the wild can be enhanced by relatively simple changes in feeding regimes and by matching stocking time with smolt development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.