Recent measurements of the H(-) beam current show that SNS is injecting about 55 mA into the RFQ compared to ∼45 mA in 2010. Since 2010, the H(-) beam exiting the RFQ dropped from ∼40 mA to ∼34 mA, which is sufficient for 1 MW of beam power. To minimize the impact of the RFQ degradation, the service cycle of the best performing source was extended to 6 weeks. The only degradation is fluctuations in the electron dump voltage towards the end of some service cycles, a problem that is being investigated. Very recently, the RFQ was retuned, which partly restored its transmission. In addition, the electrostatic low-energy beam transport system was reengineered to double its heat sinking and equipped with a thermocouple that monitors the temperature of the ground electrode between the two Einzel lenses. The recorded data show that emissions from the source at high voltage dominate the heat load. Emissions from the partly Cs-covered first lens cause the temperature to peak several hours after starting up. On rare occasions, the temperature can also peak due to corona discharges between the center ground electrode and one of the lenses.
RF Test Facility (RFTF) has been constructed to support present and future needs in testing, processing and conditioning of various high power RF components of normal conducting and superconducting systems at the SNS. The facility is expected to have additional subsystems that are needed for complete superconducting RF (SRF) testing and processing. A full capacity high voltage converter modulator (HVCM) with 11 MW peak power at 8% duty cycle has been installed for driving one or two klystron RF amplifiers. The waveguides are completed in WR-2100 and WR-1150 for the 402.5 MHz and 805 MHz klystrons being used in the SNS. The 805 MHz system has been used for RF processing the coaxial fundamental power couplers (FPCs) for the SNS superconducting linac (SCL) [1]. The high power RF system can be reconfigured or modified for various tests and conditioning processes along with the neighboring cryo-plant.
BNL is undertaking the design, construction and commissioning of the Spallation Neutron Source (SNS) accumulator ring and the beam transport lines [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.