our results suggest that collegiate athletes can maintain sufficient status during the fall and spring but would benefit from supplementation during the winter to prevent seasonal decreases in 25(OH)D concentrations. Results further suggest that insufficient vitamin D status may increase risk for frequent illness. Future research is needed to identify whether vitamin D status influences injury risk during athletic training or competition.
Excess body fat or obesity is known to increase risk of poor vitamin D status in nonathletes but it is not known if this is the case in athletes. Furthermore, the reason for this association is not understood, but is thought to be due to either sequestration of the fat-soluble vitamin within adipose tissue or the effect of volume dilution related to obese individuals' larger body size. Forty two US college athletes (24 men 18 women, 20.7 ± 1.6 years, 85.0 ± 28.7 kg, BMI = 25.7 ± 6.1 kg/m2) provided blood samples during the fall and underwent measurement of body composition via dual energy X-ray absorptiometry. Serum samples were evaluated for 25-hydroxyvitamin D (25(OH)D) concentration to assess vitamin D status using Diasorin 25(OH)D radioiodine assay. Serum 25(OH)D concentration was negatively associated with height (r = -0.45), total body mass (r = -0.57), BMI (r = -0.57), body fat percentage (r = -0.45), fat mass (r = -0.60) and fat-free mass (r = -0.51) (p < .05). These associations did not change after controlling for sex. In a linear regression mixed model, fat mass (coefficient -0.47, p = .01), but not fat-free mass (coefficient -0.18, p = .32) significantly predicted vitamin D status and explained approximately 36% of the variation in serum 25(OH)D concentration. These results suggest that athletes with a large body size and/or excess adiposity may be at higher risk for vitamin D insufficiency and deficiency. In addition, the significant association between serum 25(OH)D concentration and fat mass in the mixed model, which remained after controlling for sex, is in support of vitamin D sequestration rather than volume dilution as an explanation for such association.
SUMMARY1. Epidemiological evidence has confirmed that obstructive sleep apnoea (OSA) significantly promotes cardiovascular risk, independent of age, sex, race and other common risk factors for cardiovascular diseases, such as smoking, drinking, obesity, diabetes mellitus, dyslipidaemia and hypertension.2. Patients with severe OSA exhibit a higher prevalence of coronary artery disease, heart failure and stroke. Despite the tight correlation between sleep apnoea and these comorbidities, the mechanisms behind increased cardiovascular risk in OSA remain elusive. Several theories have been postulated, including sympathetic activation, endothelial dysfunction, oxidative stress and inflammation.3. The association between OSA and cardiovascular diseases may be rather complicated and compounded by the presence of components of metabolic syndrome, such as obesity, hypertension, diabetes mellitus and dyslipidaemia. The present minireview updates current knowledge with regard to the cardiovascular sequelae of OSA and the mechanisms involved.
The study objective was to validate a food frequency and lifestyle questionnaire (FFLQ) to assess vitamin D intake and lifestyle factors affecting status. Methods: Data collected previously during the fall (n = 86), winter (n = 49), and spring (n = 67) in collegiate-athletes (Study 1) and in active adults (n = 123) (Study 2) were utilized. Study 1: Vitamin D intake and ultraviolet B exposure were estimated using the FFLQ and compared to serum 25(OH)D concentrations via simple correlation and linear regression modeling. Study 2: Vitamin D intake from food was estimated using FFLQ and compared to vitamin D intake reported in 7-Day food diaries via paired t-test and Bland–Altman analysis. Results: Study 1: Serum 25(OH)D was not associated with vitamin D intake from food, food plus supplements, or sun exposure, but was associated with tanning bed use (r = 0.39) in spring, supplement use in fall (r = 0.28), and BMI (body mass index) (r = −0.32 to −0.47) across all seasons. Serum 25(OH)D concentrations were explained by BMI, tanning bed use, and sun exposure in fall, (R = 0.42), BMI in winter (R = 0.32), and BMI and tanning bed use in spring (R = 0.52). Study 2: Estimated Vitamin D intake from food was 186.4 ± 125.7 via FFLQ and 148.5 ± 228.2 IU/day via food diary. There was no association between intake estimated by the two methodologies (r = 0.12, p < 0.05). Conclusions: FFLQ-estimated vitamin D intake was not associated with serum 25(OH)D concentration or food-record-estimated vitamin D intake. Results highlight the difficulty of designing/utilizing intake methodologies for vitamin D, as its status is influenced by body size and both endogenous and exogenous (dietary) sources.
Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p < 0.001, r = 0.59), normalized peak vertical power (p < 0.001, r = 0.73), and jump height (p < 0.001, r = 0.74) for the combined age groups. Most relationships were also strong within each age group, with some relationships being relatively weaker in the middle-aged and older groups. Minimal difference was found between correlation coefficients of TBLM% and LELM%. Coefficients of determination were all below 0.6 for the combined group, indicating that between-participant variability in CMJ measures cannot be completely explained by lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.