Striated muscle activity is always accompanied by oxidative stress (OxStress): the more intense muscle work and/or its duration, the more a redox imbalance may be attained. In spite of cardiac muscle functioning continuously, it is well known that the heart does not suffer from OxStress-induced damage over a broad physiological range. Although the expression of antioxidant enzymes may be of importance in defending heart muscle against OxStress, a series of combined antioxidant therapeutic approaches have proved to be mostly ineffective in avoiding cellular injury. Hence, additional mechanisms may be involved in heart cytoprotection other than antioxidant enzyme activities. The strong cardiotoxic effect of doxorubicin-induced cancer chemotherapy shed light on the possible role for multidrug resistance-associated proteins (MRP) in this context. Muscle activity-induced 'physiological' OxStress enhances the production of glutathione disulfide (GSSG) thus increasing the ratio of GSSG to glutathione (GSH) content inside the cells, which, in turn, leads to redox imbalance. Since MRP1 gene product (a GS-X pump ATPase) is a physiological GSSG transporter, adult Wistar rats were tested for MRP1 expression and activity in the heart and skeletal muscle (gastrocnemius), in as much as the latter is known to be extremely sensitive to muscle activity-induced OxS. MRP1 expression was completely absent in skeletal muscle. In contrast, the heart showed an exercise training-dependent induction of MRP1 protein expression which was further augmented (2.4-fold) as trained rats were challenged with a session of acute exercise. On the other hand, inducible expression of the 70-kDa heat shock protein (HSP70), a universal marker of cellular stress, was completely absent in the heart of sedentary and acutely exercised rats, whereas skeletal muscle showed a conspicuous exercise-dependent HSP70 expression, which decreased by 45% with exercise training. This effect was paralleled by a 58% decrease in GSH content in skeletal muscle which was even higher (an 80%-fall) after training thus leading to a marked redox imbalance ([GSSG]/[GSH] raised up to 38-fold). In the heart, GSH contents and [GSSG]/[GSH] ratio remained virtually unchanged even after exercise challenges, while GS-X pump activity was found to be 20% higher in the heart related to skeletal muscle. These findings suggest that an intrinsic higher capacity to express the MRP1/GS-X pump may dictate the redox status in the heart muscle thus protecting myocardium by preventing GSSG accumulation in cardiomyocytes as compared to skeletal muscle fibres.
The objective of this research was to define and analyze drops in reticulo-rumen temperature (Trr) as an indicator of calving time in Holstein females. Data were collected from 111 primiparous and 150 parous Holstein females between November 2012 and March 2013. Between -15 and -5 d relative to anticipated calving date, each female received an orally administered temperature sensing reticulo-rumen bolus that collected temperatures hourly. Daily mean Trr was calculated from d -5 to 0 relative to using all Trr values (A-Trr) or only Trr values ≥37.7°C (W-Trr) not altered by water intake. To identify a Trr drop, 2 methodologies for computing the baseline temperature were used. Generalized linear models (GLM) were used to estimate the probability of calving within the next 12 or 24 h for primiparous, parous, and all females, based on the size of the Trr drop. For all GLM, a large drop in Trr corresponded with a large estimated probability of calving. The predictive power of the GLM was assessed using receiver-operating characteristic (ROC) curves. The ROC curve analyses showed that all models, regardless of methodology in calculation of the baseline or tested category (primiparous or parous), were able to predict calving; however, area under the ROC curve values, an indication of prediction quality, were greater for methods predicting calving within 24 h. Further comparisons between GLM for primiparous and parous, and using baseline 1 and 2, provide insight on the differences in predictive performance. Based on the GLM, Trr drops of 0.2, 0.3, and 0.4°C were identified as useful indicators of parturition and further analyzed using sensitivity, specificity, and diagnostic odds ratios. Based on sensitivity, specificity, and diagnostic odds ratios, the best indicator of calving was an average Trr drop ≥0.2°C, regardless of methodology used to compute the baseline or category of animal evaluated.
Biodegradable composites based on poly(butylene adipate‐co‐terephthalate) (PBAT) and three different natural fibers (Croton lanjouwensis—Fiber C, Malvastrum tomentosum—Fiber M, and Trema micrantha—Fiber T) from the Amazon forest have been reported for the first time. Natural fibers were extracted through mechanical processing and the composites were prepared by melt mixing procedure. All composites showed greater modulus of elasticity than neat polymer and this improvement varies according to the type of fiber used as reinforcement. Addition of Fiber C increased 48% the modulus of elasticity of the polymer, while the addition of the Fibers M and T increased 70 and 72% the modulus of elasticity of the PBAT, respectively. The results reported in the present work support the idea that the above‐mentioned natural fibers can be used as filler material to obtain environmentally friendly polymer composites with improved properties. POLYM. COMPOS., 40:3351–3360, 2019. © 2019 Society of Plastics Engineers
One of the most critical challenges for the food packaging industry to overcome is the development of biodegradable coatings from renewable sources. In this work, purple yam starch (PYS), chitosan (CS), and glycerol were blended to obtain biodegradable films for characterization as intended food coatings. The films had a homogeneous surface, and the amount of CS highly influenced the film thickness. Infrared spectroscopy indicated hydrogen bond interactions between PYS and CS in the films. Thermogram data suggested that glycerol contributed to the thermal stability of the films, due to its greater interaction with CS than to the PYS. Finally, the application of a YS/CS film on apples for 4 weeks was able to preserve the fruit quality, as weight loss from the coated apple was significantly lower than the uncoated apple (p ¼ 0.44, Dunnet's posthoc test). YS/CS films have great prospects in the food packaging industry as a new biodegradable coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.