BackgroundSmall RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing.ResultsThe libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families.ConclusionsValidation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.
ABSTRACT. Conformation-sensitive gel electrophoresis is a useful method for identifying allele polymorphism; it provides co-dominant molecular markers. Using this method, we identified genetic variability in the third intron of the fibroin light chain gene, fib-L, in six Bombyx mori strains. Only Chinese C21A strain did not demonstrate allelic alterations, showing only homoduplex DNA molecules. We found distinct heteroduplex profiles in the Japanese HAA, M12B and M19-2 and the Chinese C25B and C24-2 strains. Analysis with restriction endonuclease fingerprinting conformation-sensitive gel electrophoresis demonstrated the potential of this method for the identification of allelic variability in B. mori; this was confirmed by cloning and sequencing the different alleles. The main alteration was a 12-bp deletion in two alleles of the C24-2 strain and one allele of the HAA strain; this deletion results in specific heteroduplex DNA molecule profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.