Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
In many species, including Arabidopsis, heterochromatin often comprises repetitive DNA elements, such as arrays of ribosomal DNA (rDNA). Repetitive regions pose a risk in meiosis since recombination between them can lead to gross genomic rearrangements. However, meiotic recombination at rDNA arrays and other heterochromatic repeat regions is blocked by not well understood mechanisms. Here, we have identified RAD21.2, an α-kleisin subunit of cohesin, as a repressor of meiotic recombination at the rDNA regions in Arabidopsis. We show that RAD21.2 co-localizes with heterochromatic factors and is specifically enriched at rDNA repeats, which are devoid of the meiosis specific α-kleisin REC8, needed for recombination. Knocking down RAD21.2, we find that REC8 moves into the nucleolus organizing regions (NORs), where we see an increase of RAD51 recombinase foci numbers. Concomitantly, we find extensive rearrangements of the NORs and the offspring of these plants have large variation in rDNA copy numbers demonstrating that RAD21.2 is necessary for transgenerational genome stability.
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.