Two polychlorinated biphenyl‐contaminated sites in the Czech Republic, a soil at Zamberk and a sediment sludge at Milevsko, were screened for the presence of chlorobenzoate degraders. Sixteen different chlorobenzoate degraders were isolated from the soil compared with only three strains isolated from the sediment. From these strains, only four soil degraders and one strain isolated from the sediment, respectively, were shown to possess a complete chlorobenzoate (CB) pathway. Bacteria isolated from the soil have expressed more flexibility for CB degradation, namely in the case of ortho‐chlorinated benzoates. They all possessed large plasmids, the restriction patterns of which were compared. Plasmids in Pseudomonas sp. A7, A8, A18 and A19, respectively, were cured and found to encode at least part of the metabolic pathway involved in the growth on ortho‐chlorinated benzoates.
Degradation of three benzonitrile herbicides, bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), dichlobenil (2, 6-dichlorobenzonitrile), and their mixtures by the soil micro-organism Agrobacterium radiobacter 8/4 was studied in batch cultures. Bromoxynil was found to be most rapidly degraded, while dichlobenil had the lowest toxicity to our strain. All transformations of studied benzonitriles were performed by the nitrile hydratase which has been shown to act on a broad range of substituted aromatic nitriles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.