Rhizosphere filamentous fungi of the genus Trichoderma, a dominant component of various soil ecosystem mycobiomes, are characterized by the ability to colonize plant roots. Detailed knowledge of the properties of Trichoderma, including metabolic activity and the type of interaction with plants and other microorganisms, can ensure its effective use in agriculture. The growing interest in the application of Trichoderma results from their direct and indirect biocontrol potential against a wide range of soil phytopathogens. They act through various complex mechanisms, such as mycoparasitism, the degradation of pathogen cell walls, competition for nutrients and space, and induction of plant resistance. With the constant exposure of plants to a variety of pathogens, especially filamentous fungi, and the increased resistance of pathogens to chemical pesticides, the main challenge is to develop biological protection alternatives. Among non-pathogenic microorganisms, Trichoderma seems to be the best candidate for use in green technologies due to its wide biofertilization and biostimulatory potential. Most of the species from the genus Trichoderma belong to the plant growth-promoting fungi that produce phytohormones and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme. In the present review, the current status of Trichoderma is gathered, which is especially relevant in plant growth stimulation and the biocontrol of fungal phytopathogens.
Both hormonal balance and plant growth may be shaped by microorganisms synthesizing phytohormones, regulating its synthesis in the plant and inducing plant resistance by releasing elicitors from cell walls (CW) by degrading enzymes (CWDE). It was shown that the Trichoderma DEMTkZ3A0 strain, isolated from a healthy rye rhizosphere, colonized the rhizoplane of wheat seedlings and root border cells (RBC) and caused approximately 40% increase of stem weight. The strain inhibited (in over 90%) the growth of polyphagous Fusarium spp. (F. culmorum, F. oxysporum, F. graminearum) phytopathogens through a mechanism of mycoparasitism. Chitinolytic and glucanolytic activity, strongly stimulated by CW of F. culmorum in the DEMTkZ3A0 liquid culture, is most likely responsible for the lysis of hyphae and macroconidia of phytopathogenic Fusarium spp. as well as the release of plant resistance elicitors. In DEMTkZ3A0 inoculated plants, an increase in the activity of the six tested plant resistance markers and a decrease in the concentration of indoleacetic acid (IAA) auxin were noted. IAA and gibberellic acid (GA) but also the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) enzyme regulating ethylene production by plant were synthesized by DEMTkZ3A0 in the liquid culture. IAA synthesis was dependent on tryptophan and negatively correlated with temperature, whereas GA synthesis was positively correlated with the biomass and temperature.
Rhizobium leguminosarum bv. trifolii exopolysaccharide (EPS) plays an important role in determining symbiotic competence. The pssA gene encoding the first glucosyl-IP-transferase and rosR encoding a positive transcriptional regulator are key genes involved in the biosynthesis and regulation of EPS production. Mutation in pssA resulted in deficiency in EPS production and rosR mutation substantially decreased the amount of EPS. Both mutants induced nodules but the bacteria were unable to fix nitrogen. Defective functions of pssA and rosR mutants were fully restored by wild type copies of the respective genes. Introduction of multiple rosR and pssA gene copies on the plasmid vector pBBR1MCS-2 into five R. leguminosarum bv. trifolii nodule isolates resulted in significantly increased growth rates, EPS production and the number of nodules on clover roots. Increase in fresh and dry shoot mass of clovers and nodule occupation was also statistically significant. Interestingly, additional copies of pssA but particularly rosR gene, increased strains' competitiveness in relation to the wild type parental strains nearly twofold. Overall, experimental evidence is provided that increased amount of EPS beneficially affects R. leguminosarum bv. trifolii competitiveness and symbiosis with clover.
The endogenous pool of phytoregulators in plant tissues supplied with microbial secondary metabolites may be crucial for the development of winter wheat seedlings during cool springs. The phytohormones may be synthesized by psychrotrophic microorganisms in lower temperatures occurring in a temperate climate. Two fungal isolates from the Spitzbergen soils after the microscopic observations and “the internal transcribed spacer” (ITS) region molecular characterization were identified as Mortierella antarctica (MA DEM7) and Mortierella verticillata (MV DEM32). In order to study the synthesis of indoleacetic acid (IAA) and gibberellic acid (GA), Mortierella strains were grown on media supplemented with precursor of phytohormones tryptophan at 9, 15 °C, and 20 °C for nine days. The highest amount of IAA synthesis was identified in MV DEM32 nine-day-culture at 15 °C with 1.5 mM of tryptophan. At the same temperature (15 °C), the significant promoting effect (about 40% root and shoot fresh weight) of this strain on seedlings was observed. However, only MA DEM-7 had the ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with the highest efficiency at 9 °C and synthesized IAA without tryptophan. Moreover, at the same conditions, the strain was confirmed to possess the strong promoting effect (about 40% root and 24% shoot fresh weight) on seedlings. Both strains synthesized GA in all tested terms and temperatures. The studied Mortierella strains had some important traits that led them to be considered as microbial biofertilizers components, improving plant growth in difficult temperate climates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.