Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
The acidic exopolysaccharide is required for the establishment of symbiosis between the nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii and clover. Here, we describe RosR protein from R. leguminosarum bv. trifolii 24.2, a homolog of transcriptional regulators belonging to the family of Ros/MucR proteins. R. leguminosarum bv. trifolii RosR possesses a characteristic Cys2His2 type zinc-finger motif in its C-terminal domain. Recombinant (His)6RosR binds to an RosR-box sequence located up-stream of rosR. Deletion analysis of the rosR upstream region resulted in identification of two -35 to -10 promoter sequences, two conserved inverted palindromic pentamers that resemble the cAMP-CRP binding site of Escherichia coli, inverted repeats identified as a RosR binding site, and other regulatory sequence motifs. When assayed in E. coli, a transcriptional fusion of the cAMP-CRP binding site containing the rosR upstream region and lacZ gene was moderately responsive to glucose. The sensitivity of the rosR promoter to glucose was not observed in E. coli deltacyaA. A rosR frame-shift mutant of R. leguminosarum bv. trifolii formed dry, wrinkled colonies and induced nodules on clover, but did not fix nitrogen. In the rosR mutant, transcription of pssA-lacZ fusion was decreased, indicating positive regulation of the pssA gene by RosR. Multiple copies of rosR in R. leguminosarum bv. trifolii 24.2 increased exopolysaccharide production.
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear.This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/ exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Rhizobium leguminosarum bv. trifolii exopolysaccharide (EPS) plays an important role in determining symbiotic competence. The pssA gene encoding the first glucosyl-IP-transferase and rosR encoding a positive transcriptional regulator are key genes involved in the biosynthesis and regulation of EPS production. Mutation in pssA resulted in deficiency in EPS production and rosR mutation substantially decreased the amount of EPS. Both mutants induced nodules but the bacteria were unable to fix nitrogen. Defective functions of pssA and rosR mutants were fully restored by wild type copies of the respective genes. Introduction of multiple rosR and pssA gene copies on the plasmid vector pBBR1MCS-2 into five R. leguminosarum bv. trifolii nodule isolates resulted in significantly increased growth rates, EPS production and the number of nodules on clover roots. Increase in fresh and dry shoot mass of clovers and nodule occupation was also statistically significant. Interestingly, additional copies of pssA but particularly rosR gene, increased strains' competitiveness in relation to the wild type parental strains nearly twofold. Overall, experimental evidence is provided that increased amount of EPS beneficially affects R. leguminosarum bv. trifolii competitiveness and symbiosis with clover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.