Melatonin, a pineal secretory product, synthesized from l-tryptophan, has received increased attention because of its antioxidative and immunomodulatory properties. It has been detected in the gut and shown to protect the gastric mucosa, and liver from acute damage, but the role of melatonin in the protection of the pancreas against acute inflammation is not clear. The aim of this study was to investigate the effects of melatonin and its precursor, l-tryptophan, on caerulein-induced pancreatitis (CIP) and on ischemia/reperfusion (I/R)-provoked pancreatitis in rats. CIP was induced by subcutaneous infusion of caerulein to the rats (25 microg/kg). I/R was induced by clamping of the inferior splenic artery for 30 min followed by 2 hr of reperfusion. Melatonin (10, 25 or 50 mg/hr) or l-tryptophan (50, 100 or 250 mg/kg) was given as a bolus intraperitoneal (i.p.) injection 30 min prior to the onset of pancreatitis. CIP and I/R were confirmed by histologic examination and manifested by typical pancreatic edema, by an increase of plasma levels of amylase (by 500% in CIP and by 40% in I/R) and the pro-inflammatory tumor necrosis factor alpha (TNFalpha) (by 500%). Lipid peroxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), were increased several fold in the pancreas CIP and I/R, whereas pancreatic blood flow (PBF) was significantly reduced in these animals. Pretreatment of rats subjected to CIP or to I/R with melatonin (25 or 50 mg/kg i.p.) or l-tryptophan (100 or 250 mg/kg i.p.) significantly reduced pancreatic edema, plasma levels of amylase and TNFalpha and diminished pancreatic MDA + 4-HNE contents, while enhancing PBF, pancreatic integrity and plasma levels of the anti-inflammatory interleukin 10 (IL-10). This was accompanied by a marked and dose-dependent rise of plasma melatonin immunoreactivity. Gene expression of N-acetyl transferase, an enzyme involved in melatonin biosynthesis, was detected in the pancreas of normal rats and was significantly enhanced in the rats with CIP. We conclude that exogenous melatonin, and that produced from l-tryptophan, attenuates pancreatic damage induced by CIP or by I/R and this effect may be attributable to the reduction in lipid peroxidation and TNFalpha release combined with an increase of plasma anti-inflammatory IL-10 in rats with acute pancreatitis.
: Melatonin was thought to originate primarily from the pineal gland and to be secreted during the night, but recent studies revealed that gastrointestinal (GI) tract presents another, many times larger, source of melatonin that contributes significantly to the circulating concentration of this indole. Melatonin may exert a direct effect on GI tissues but its major influence on GI organs seems to occur indirectly, via the brain–gut axis including peripheral receptors, sensory afferent (vagal or sympathetic) pathways and central nervous system (CNS) acting on these organs via autonomic efferents and neuromediators. This article reviews and updates our experience with the fascinating molecule, as related to GI organs, with special focus on secretory activity of the stomach and pancreas and the maintenance of their tissue integrity. In addition to being released into the circulation, melatonin is also discharged into the gut lumen and this appears to be implicated in the postprandial stimulation of pancreatic enzyme secretion, mediated by melatonin‐induced release of cholecystokinin, acting through entero‐gastro‐pancreatic reflexes. Although exerting certain differences in the mechanism of action on gastric and pancreatic secretory activities, melatonin derived from its precursor l‐tryptophan, exhibits similar highly protective actions against the damage of both the stomach and the pancreas and accelerates the healing of chronic gastric ulcerations by stimulating the microcirculation and cooperating with arachidonate metabolites such as prostaglandins, with nitric oxide released from vascular endothelium, and/or sensory nerves and with their neuropeptides such as calcitonin gene related peptide. The beneficial effects of melatonin results in gastro‐ and pancreato‐protection, prevents various forms of gastritis and pancreatitis through the activation of specific MT2‐receptors and scavenges reactive oxygen species (ROS). Melatonin counteracts the increase in the ROS‐induced lipid peroxidation and preserves, at least in part, the activity of key anti‐oxidizing enzymes such as superoxide dismutase. It is proposed that melatonin should be considered as the agent exerting an important role in prevention of gastric and pancreatic damage and in accelerating healing of gastric ulcers.
Background: Leptin is a pleiotropic hormone that is involved in the regulation of food intake and body weight. Recent findings demonstrated that leptin receptors are present in the pancreas but the involvement of leptin in pancreatitis remains unknown. The aim of the present study was: (1) to assess plasma leptin levels in rats with caerulein-induced pancreatitis (CIP) and humans with acute pancreatitis; and (2) to determine the effects of exogenous leptin on the course of acute CIP in rats Methods: CIP was produced in Wistar rats by s.c. infusion of 5 µg of caerulein for 5 h. Plasma leptin was measured by specific RIA and leptin expression in the pancreas was determined at the transcriptional and protein levels. In addition, the effects of exogenous leptin at the doses of 1 or 10 µg/kg i.p. on the course of CIP and the plasma levels and mRNA expression in pancreas of cytokines TNFα and IL-4 were studied. Furthermore, pancreatic cNOS and iNOS expression at mRNA level were measured in rats with CIP and pretreated with leptin. Parallel to these studies, the plasma levels of leptin were measured in 15 patients with acute edematous pancreatitis and in 30 healthy controls of comparable age and body mass index. Results: In rats, plasma leptin rose significantly from the median of 0.14 (0.03–0.3 ng/ml) in the control group to 0.56 (0.2–3.2 ng/ml) in rats with CIP. The CIP was associated with an upregulation of mRNA and protein for leptin in the pancreas. The administration of exogenous leptin significantly reduced the weight of pancreas, histological manifestations of pancreatitis, plasma TNFα and mRNA expression for iNOS in the pancreatic tissue. The assessment of leptin plasma level in humans demonstrated significantly higher median values of plasma leptin in patients with acute pancreatitis [7.5 (4.3–18.4 ng/ml)] than in healthy controls [2.1 (1.0–11.8 ng/ml)]. Conclusions: (1) Acute pancreatitis in rats and in humans is associated with a marked increase in the plasma level of leptin. (2) The transcriptional upregulation of leptin in the pancreas after induction of pancreatitis indicates that the inflammed pancreas could be the source of local production of leptin. (3) Exogenous leptin protects the pancreas against development of acute CIP in rats and one possible mechanism of action of leptin might be attributed to the activation of nitric oxide pathway.
Melatonin, an antioxidant, protects the pancreas against acute inflammation but, although this indole is released mainly at night, no study has been undertaken to determine circadian changes of plasma melatonin levels and the severity of acute pancreatitis. The aims of this study were: (a) to compare the severity of caerulein-induced pancreatitis (CIP) produced in the rat during the day and at the night, and (b) to assess the changes of plasma melatonin level and the activity of an antioxidative enzyme; superoxide dismutase (SOD), in the pancreas subjected to CIP during the day time and at night without or with administration of exogenous melatonin or its precursor; l-tryptophan. Rats were kept in 12 hr light/dark cycle. CIP was induced by subcutaneous infusion of caerulein (5 microg/kg/hr for 5 hr). Melatonin (5 or 25 mg/kg) or l-tryptophan (50 or 250 mg/kg) was given intraperitoneally 30 min prior to the start of CIP. CIP induced during the day time was confirmed by histological examination and manifested by pancreatic edema, and rises of amylase and lipase plasma activities (by 400 and 500%, respectively), whereas pancreatic SOD, pancreatic blood flow (PBF) and oxygen consumption by pancreatic tissue (VO(2)) were decreased by 70, 40 and 45%, respectively, as compared with the appropriate controls. All morphological and biochemical parameters of CIP induced at night were significantly less severe, compared with those recorded during the light phase. Plasma melatonin immunoreactivity was significantly higher during the night, than during the day, especially following administration of melatonin or its precursor, which reversed all manifestations of CIP. In conclusion, a circadian rhythm modulates the severity of CIP with a decrease of pancreatitis severity during the night compared with that at the day time and this may be due to the increased plasma level of melatonin and higher activity of SOD in the pancreas.
Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.