Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients.
Melatonin, a pineal secretory product, synthesized from l-tryptophan, has received increased attention because of its antioxidative and immunomodulatory properties. It has been detected in the gut and shown to protect the gastric mucosa, and liver from acute damage, but the role of melatonin in the protection of the pancreas against acute inflammation is not clear. The aim of this study was to investigate the effects of melatonin and its precursor, l-tryptophan, on caerulein-induced pancreatitis (CIP) and on ischemia/reperfusion (I/R)-provoked pancreatitis in rats. CIP was induced by subcutaneous infusion of caerulein to the rats (25 microg/kg). I/R was induced by clamping of the inferior splenic artery for 30 min followed by 2 hr of reperfusion. Melatonin (10, 25 or 50 mg/hr) or l-tryptophan (50, 100 or 250 mg/kg) was given as a bolus intraperitoneal (i.p.) injection 30 min prior to the onset of pancreatitis. CIP and I/R were confirmed by histologic examination and manifested by typical pancreatic edema, by an increase of plasma levels of amylase (by 500% in CIP and by 40% in I/R) and the pro-inflammatory tumor necrosis factor alpha (TNFalpha) (by 500%). Lipid peroxidation products such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), were increased several fold in the pancreas CIP and I/R, whereas pancreatic blood flow (PBF) was significantly reduced in these animals. Pretreatment of rats subjected to CIP or to I/R with melatonin (25 or 50 mg/kg i.p.) or l-tryptophan (100 or 250 mg/kg i.p.) significantly reduced pancreatic edema, plasma levels of amylase and TNFalpha and diminished pancreatic MDA + 4-HNE contents, while enhancing PBF, pancreatic integrity and plasma levels of the anti-inflammatory interleukin 10 (IL-10). This was accompanied by a marked and dose-dependent rise of plasma melatonin immunoreactivity. Gene expression of N-acetyl transferase, an enzyme involved in melatonin biosynthesis, was detected in the pancreas of normal rats and was significantly enhanced in the rats with CIP. We conclude that exogenous melatonin, and that produced from l-tryptophan, attenuates pancreatic damage induced by CIP or by I/R and this effect may be attributable to the reduction in lipid peroxidation and TNFalpha release combined with an increase of plasma anti-inflammatory IL-10 in rats with acute pancreatitis.
BackgroundStress of different origin is known to alter so called “brain-gut axis” and contributes to a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases. The stressful situations and various stressors including psychosocial events, heat, hypo- and hyperthermia may worsen the course of IBD via unknown mechanism. The aims of this paper were to provide an overview of experimental and clinical evidences that stress activates the brain-gut axis which results in a mucosal mast cells activation and an increase in the production of proinflammatory cytokines and other endocrine and humoral mediators.MethodsResearch and online content related to effects of stress on lower bowel disorders are reviewed and most important mechanisms are delineated.ResultsBrain conveys the neural, endocrine and circulatory messages to the gut via brain-gut axis reflecting changes in corticotrophin releasing hormone, mast cells activity, neurotransmission at the autonomic nerves system and intestinal barrier function all affecting the pathogenesis of animal colitis and human IBD. Stress triggers the hypothalamus-pituitary axis and the activation of the autonomic nervous system, an increase in cortisol levels and proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-8, interleukin-1beta and interleukin-6.ConclusionThe acute or chronic stress enhances the intestinal permeability weakening of the tight junctions and increasing bacterial translocation into the intestinal wall. An increased microbial load in the colonic tissue, excessive cytokine release and a partially blunted immune reactivity in response to stress result in its negative impact on IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.