Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype-8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged lifespan to more than one year in the absence of toxicity, humoral and cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small and large animal models, and provide proof of concept for future clinical trials in XLMTM patients.
Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40 -/-mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients.
Dioxin-like compounds (DLCs) elicit adverse effects through activation of the aryl hydrocarbon receptor (AHR). Prior investigations demonstrated that sensitivity to activation of AHR1 in an in vitro AHR transactivation assay is predictive of early life stage mortality among birds. The present study investigated the link between sensitivity to activation of AHR1s and AHR2s and early life stage mortality among fishes. A significant, linear relationship was demonstrated between sensitivity to activation of AHR2 and early life stage mortality among nine fishes, while no relationship was found for AHR1. The slope and y-intercept for the linear relationship between sensitivity to activation of AHR1 and early life stage mortality in birds was not statistically different from the same relationship for AHR2 in fishes. Data for fishes and birds across DLCs were expanded into four significant, linear regression models describing the relationship between sensitivity to activation of AHR and the dose to cause early life stage mortality of 0%, 10%, 50%, or 100%. These four relationships were combined to form a quantitative adverse outcome pathway which can predict dose-response curves of early life stage mortality for DLCs to any bird or fish from species- and chemical-specific responses in an in vitro AHR transactivation assay.
More than 1000 per-and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column coelution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI − ) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C 8 -and C 10 /EO n , C 8 H 17 (C 2 H 4 O) n SO 4 − , and C 10 H 21 (C 2 H 4 O) n SO 4 −). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C 14 -and C 15 /EO n . This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.