More than 1000 per-and polyfluoroalkyl substances (PFASs) have been discovered by nontarget analysis (NTA), but their prioritization for health concerns is challenging. We developed a method by incorporating size-exclusion column coelution (SECC) and NTA, to screen PFASs binding to human liver fatty acid binding protein (hL-FABP). Of 74 PFASs assessed, 20 were identified as hL-FABP ligands in which eight of them have high binding affinities. Increased PFAS binding affinities correlate with stronger responses in electrospray ionization (ESI − ) and longer retention times on a C18 column. This is well explained by a mechanistic model, which revealed that both polar and hydrophobic interactions are crucial for binding affinities. Encouraged by this, we then developed an SECC method to identify hL-FABP ligands, and all eight high-affinity ligands were selectively captured from 74 PFASs. The method was further applied to an aqueous film-forming foam (AFFF) product in which 31 new hL-FABP ligands were identified. Suspect and nontargeted screening revealed these ligands as analogues of perfluorosulfonic acids and homologues of alkyl ether sulfates (C 8 -and C 10 /EO n , C 8 H 17 (C 2 H 4 O) n SO 4 − , and C 10 H 21 (C 2 H 4 O) n SO 4 −). The SECC method was then applied to AFFF-contaminated surface waters. In addition to perfluorooctanesulfonic acid and perfluorohexanesulfonic acid, eight other AFFF chemicals were discovered as novel ligands, including four C 14 -and C 15 /EO n . This study implemented a high-throughput method to prioritize PFASs and revealed the existence of many previously unknown hL-FABP ligands.
BACKGROUND: Thousands of per-and polyfluoroalkyl substances (PFAS) with diverse structures have been detected in the ambient environment. Apart from a few well-studied PFAS, the structure-related toxicokinetics of a broader set of PFAS remain unclear. OBJECTIVES: To understand the toxicokinetics of PFAS, we attempted to characterize the metabolism pathways of 74 structurally diverse PFAS samples from the U.S. Environmental Protection Agency's PFAS screening library. METHODS: Using the early life stages of zebrafish (Danio rerio) as a model, we determined the bioconcentration factors and phenotypic toxicities of 74 PFAS. Then, we applied high-resolution mass spectrometry-based nontargeted analysis to identify metabolites of PFAS in zebrafish larvae after 5 d of exposure by incorporating retention time and mass spectra. In vitro enzymatic activity experiments with human recombinant liver carboxylesterase (hCES1) were employed to validate the structure-related hydrolysis of 11 selected PFAS. RESULTS: Our findings identified five structural categories of PFAS prone to metabolism. The metabolism pathways of PFAS were highly related to their structures as exemplified by fluorotelomer alcohols that the predominance of b-oxidation or taurine conjugation pathways were primarily determined by the number of hydrocarbons. Hydrolysis was identified as a major metabolism pathway for diverse PFAS, and perfluoroalkyl carboxamides showed the highest in vivo hydrolysis rates, followed by carboxyesters and sulfonamides. The hydrolysis of PFAS was verified with recombinant hCES1, with strong substrate preferences toward perfluoroalkyl carboxamides. CONCLUSIONS:We suggest that the roadmap of the structure-related metabolism pathways of PFAS established in this study would provide a starting point to inform the potential health risks of other PFAS.
We analyzed 72 children’s textile products marketed as stain-resistant from US and Canadian stores, particularly school uniforms, to assess if clothing represents a significant route of exposure to per- and polyfluoroalkyl substances (PFAS). Products were first screened for total fluorine (total F) using particle-induced γ-ray emission (PIGE) spectroscopy ( n = 72), followed by targeted analysis of 49 neutral and ionic PFAS ( n = 57). PFAS were detected in all products from both markets, with the most abundant compound being 6:2 fluorotelomer alcohol (6:2 FTOH). Total targeted PFAS concentrations for all products collected from both countries ranged from 0.250 to 153 000 ng/g with a median of 117 ng/g (0.0281–38 100 μg/m 2 , median: 24.0 μg/m 2 ). Total targeted PFAS levels in school uniforms were significantly higher than in other items such as bibs, hats, stroller covers, and swimsuits, but comparable to outdoor wear. Higher total targeted PFAS concentrations were found in school uniforms made of 100% cotton than synthetic blends. Perfluoroalkyl acids (PFAAs) precursors were abundant in school uniforms based on the results of hydrolysis and total oxidizable precursor assay. The estimated median potential children’s exposure to PFAS via dermal exposure through school uniforms was 1.03 ng/kg bw/day. Substance flow analysis estimated that ∼3 tonnes/year (ranging from 0.05 to 33 tonnes/year) of PFAS are used in US children’s uniforms, mostly of polymeric PFAS but with ∼0.1 tonne/year of mobile, nonpolymeric PFAS.
Exposure to air pollution causes adverse health outcomes, but the toxicity mechanisms remain unclear. Here, we investigated the dynamic toxicities of naphthalene-derived secondary organic aerosol (NSOA) in a human bronchial epithelial cell line (BEAS-2B) and identified the chemical components responsible for toxicities. The chemical composition of NSOA was found to vary with six simulated atmospheric aging conditions (C1–C6), as characterized by high-resolution mass spectrometry and ion mobility mass spectrometry. Global proteome profiling reveals dynamic evolution in toxicity: Stronger proteome-wide impacts were detected in fresh NSOA, but the effects declined along with atmospheric aging. While Nrf2-regulated proteins (e.g., NQO1) were significantly up-regulated, the majority (78 to 97%) of proteins from inflammation and other pathways were down-regulated by NSOA exposure (e.g., Rho GTPases). This pattern is distinct from the reactive oxygen species (ROS)-mediated toxicity pathway, and an alternative cysteine reaction pathway was revealed by the decreased abundance of proteins (e.g., MT1X) prone to posttranslational thiol modification. This pathway was further validated by observing decreased Nrf2 response in reporter cells, after preincubating NSOA with cysteine. Ethynyl-naphthalene probe was employed to confirm the alkylation of cellular proteome thiols on the proteome-wide level by fresh NSOA via in-gel fluorescence imaging. Nontarget analysis identified several unsaturated carbonyls, including naphthoquinones and hydroxylated naphthoquinones, as the toxic components responsible for cysteine reactivity. Our study provides insights into the dynamic toxicities of NSOA during atmospheric aging and identifies short-lived unsaturated carbonyls as the predominant toxic components at the posttranslational level.
6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was previously shown to undergo limited dechlorination in rainbow trout to yield 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) as the sole metabolite. However, the biotransformation susceptibility of 6:2 Cl-PFESA has not been investigated in mammals and the biological behavior of 6:2 H-PFESA has not been defined in any species. We investigated the respective transformation products of 6:2 Cl-PFESA and 6:2 H-PFESA and their toxicokinetic properties in male Sprague–Dawley rats as a mammalian model. 6:2 H-PFESA was the sole detectable metabolite of 6:2 Cl-PFESA, with a transformation percentage of 13.6% in rat liver, but it resisted further degradation. 6:2 Cl-PFESA also transformed to 6:2 H-PFESA in reductive rat liver S9 incubations but remained stable under oxidative conditions, suggesting a reductive enzyme-dependent transformation pathway. 6:2 Cl-PFESA was more enriched in lipid-rich tissues, while 6:2 H-PFESA was more prone to cumulative urinary excretion. From this perspective, it may suggest a detoxification mechanism for organisms to form the less hydrophobic 6:2 H-PFESA to alleviate total burdens. To date, 6:2 Cl-PFESA was the second perfluoroalkyl acid reported to undergo biotransformation in mammals. The toxicokinetic properties determined for 6:2 Cl-PFESA and 6:2 H-PFESA in blood and urine were found to be structure and dose dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.