The discovery of sulfoxaflor [N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl]ethyl]-λ(4)-sulfanylidene] cyanamide] resulted from an investigation of the sulfoximine functional group as a novel bioactive scaffold for insecticidal activity and a subsequent extensive structure-activity relationship study. Sulfoxaflor, the first product from this new class (the sulfoximines) of insect control agents, exhibits broad-spectrum efficacy against many sap-feeding insect pests, including aphids, whiteflies, hoppers, and Lygus, with levels of activity that are comparable to those of other classes of insecticides targeting sap-feeding insects, including the neonicotinoids. However, no cross-resistance has been observed between sulfoxaflor and neonicotinoids such as imidacloprid, apparently the result of differences in susceptibility to oxidative metabolism. Available data are consistent with sulfoxaflor acting via the insect nicotinic receptor in a complex manner. These observations reflect the unique structure of the sulfoximines compared with neonicotinoids.
The sulfoximines, as exemplified by sulfoxaflor ([N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl]ethyl]-λ(4)-sulfanylidene] cyanamide] represent a new class of insecticides. Sulfoxaflor exhibits a high degree of efficacy against a wide range of sap-feeding insects, including those resistant to neonicotinoids and other insecticides. Sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and functions in a manner distinct from other insecticides acting at nAChRs. The sulfoximines also exhibit structure activity relationships (SAR) that are different from other nAChR agonists such as the neonicotinoids. This review summarizes the sulfoximine SAR, mode of action and the biochemistry underlying the observed efficacy on resistant insect pests, with a particular focus on sulfoxaflor.
The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross-resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap-feeding insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.