Tree species can influence biogeochemistry through variation in the quantity and chemistry of their litter, and associated impacts on the soil heterotrophic community. However, the role that different plant traits play in these processes is not well understood, nor is it clear whether species effects on soils largely reflect a gymnosperm vs. angiosperm contrast. Using a replicated, long-term monoculture plot experiment, we examined variation in soils among 14 gymnosperm and angiosperm tree species 30 years after plot establishment, and assessed the role of litter chemistry vis-à-vis such variation. Differences in litter calcium concentrations among tree species resulted in profound changes in soil acidity and fertility that were similar within and among tree groups. Tree species rich in calcium were associated with increased native earthworm abundance and diversity, as well as increased soil pH, exchangeable calcium, per cent base saturation and forest floor turnover rate.
The contribution of various bacterial surface functional groups to adhesion at hematite and ZnSe surfaces was examined using attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. When live Shewanella oneidensis, Pseudomonas aeruginosa, and Bacillus subtilis cells were introduced to a horizontal hematite (alpha-Fe(2)O(3))-coated internal reflection element (IRE), FTIR peaks emerged corresponding to bacterial phosphate group binding. These IR peaks were not observed when bacteria were introduced to the uncoated ZnSe IRE. When cells were added to colloidal suspensions of alpha-Fe(2)O(3) at pH 7, spectra included peaks corresponding to P-OFe and nu(COOH), the latter being attributed to bridging of carboxylate at mineral surface OH groups. Selected model organic compounds with P-containing functionalities (phenylphosphonic acid [PPA], adenosine 5'-monophosphate [AMP], 2'-deoxyadenyl(3'-->5')-2'-deoxyadenosine [DADA], and deoxyribonucleic acid [DNA]) produce spectra with similar peaks corresponding to P-OFe when adsorbed to alpha-Fe(2)O(3). The data indicate that both terminal phosphate/phosphonate and phosphodiester groups, either exuded from the cell or present as surface biomolecules, are involved in bacterial adhesion to Fe-oxides through formation of innersphere Fe-phosphate/phosphonate complexes.
Soils retain large quantities of carbon, thereby slowing its return to the atmosphere. The mechanisms governing organic carbon sequestration in soil remain poorly understood, yet are integral to understanding soil-climate feedbacks. We evaluated the biochemistry of dissolved and solid organic carbon in potential source and sink horizons across a chronosequence of volcanic soils in Hawai'i. The soils are derived from similar basaltic parent material on gently sloping volcanic shield surfaces, support the same vegetation assemblage, and yet exhibit strong shifts in soil mineralogy and soil carbon content as a function of volcanic substrate age. Solid-state 13 carbon nuclear magnetic resonance spectra indicate that the most persistent mineral-bound carbon is comprised of partially oxidized aromatic compounds with strong chemical resemblance to dissolved organic matter derived from plant litter. A molecular mixing model indicates that protein, lipid, carbohydrate, and char content decreased whereas oxidized lignin and carboxyl/carbonyl content increased with increasing short-range order mineral content. When solutions rich in dissolved organic matter were passed through Bw-horizon mineral cores, aromatic compounds were preferentially sorbed with the greatest retention occurring in horizons containing the greatest amount of short-range ordered minerals. These minerals are reactive metastable nanocrystals that are most common in volcanic soils, but exist in smaller amounts in nearly all major soil classes. Our results indicate that long-term carbon storage in short-range ordered minerals occurs via chemical retention with dissolved aromatic acids derived from plant litter and carried along preferential flow-paths to deeper B horizons.
Reactions at ionizable functional groups in extracellular polymeric substances (EPS) from Bacillus subtilis are found to affect aqueous phase conformation and adsorption to mineral surfaces. Characterization by HPSEC, XPS, and FTIR indicates a wide range in apparent molecular mass (0.57-128 kDa), with functional group composition depending on cell growth phase (exponential vs stationary) and location in suspension (free vs cell-bound). ATR-FTIR spectroscopy shows complexation and dissociation of protons on acidic functional groups that result in alpha-helical protein conformation at pH < 2.6 and random coil (unordered) conformation at higher pH (>6). EPS exhibit higher affinity for adsorption to alpha-FeOOH than amorphous SiO(2) because of surface charge effects. Increased amide II band intensity and an amide I band shift to higher frequency indicate changes in protein structure upon adsorption. Goethite-EPS spectra show emergent vibrations consistent with P-O-Fe bonding, which suggests a role of phosphodiester groups in the adsorption reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.