Vegetation change and anthropogenic development are altering ecosystems and decreasing biodiversity. Successful management of ecosystems threatened by multiple stressors requires development of ecosystem conservation plans rather than single species plans. We selected the big sagebrush (Artemisia tridentata Nutt.) ecosystem to demonstrate this approach. The area occupied by the sagebrush ecosystem is declining and becoming increasingly fragmented at an alarming rate because of conifer encroachment, exotic annual grass invasion, and anthropogenic development. This is causing rangewide declines and localized extirpations of sagebrush associated fauna and flora. To develop an ecosystem conservation plan, a synthesis of existing knowledge is needed to prioritize and direct management and research. Based on the synthesis, we concluded that efforts to restore higher elevation conifer-encroached, sagebrush communities were frequently successful, while restoration of exotic annual grass-invaded, lower elevation, sagebrush communities often failed. Overcoming exotic annual grass invasion is challenging and needs additional research to improve the probability of restoration and identify areas where success would be more probable. Management of fire regimes will be paramount to conserving sagebrush communities, as infrequent fires facilitate conifer encroachment and too frequent fires promote exotic annual grasses. Anthropogenic development needs to be mitigated and reduced to protect sagebrush communities and this probably includes more conservation easements and other incentives to landowners to not develop their properties. Threats to the sustainability of sagebrush ecosystem are daunting, but a coordinated ecosystem conservation plan that focuses on applying successful practices and research to overcome limitations to conservation is most likely to yield success.
Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (<0.5% cover), and vegetation characteristics were similar between grazed and ungrazed treatments. However, litter accumulation was almost twofold greater in ungrazed than in grazed treatments. Long-term grazing exclusion followed by burning resulted in a substantial B. tectorum invasion, but burning the grazed areas did not produce an invasion. The ungrazed-burned treatment also had less perennial vegetation than other treatments. The accumulation of litter (fuel) in ungrazed treatments may have resulted in greater fire-induced mortality of perennial vegetation in ungrazed compared to grazed treatments. Our results demonstrate that prior disturbances exert a strong influence on the response of plant communities to subsequent disturbances and suggest that low-severity disturbances may be needed in some plant communities to increase their resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.
Western juniper (Juniperus occidentalis spp. occidentalis Hook.) has encroached on and now dominates millions of acres of sagebrush/bunchgrass rangeland in the Great Basin and interior Pacific Northwest. On many sites western juniper has significantly increased exposure of the soil surface by reducing density of understory species and surface litter. We used rainfall and rill simulation techniques to evaluate infiltration, runoff, and erosion on cut and uncut field treatments 10 years after juniper removal. Juniper-dominated hillslopes had significantly lower surface soil cover of herbaceous plants and litter and produced rapid runoff from low-intensity rainfall events of the type that would be expected to occur every 2 years. Direct exposure of the soil to rainfall impacts resulted in high levels of sheet erosion (295 kg ? ha 21) in juniper-dominated plots. Large interconnected patches of bare ground concentrated runoff into rills with much higher flow velocity and erosive force resulting in rill erosion rates that were over 15 times higher on juniper-dominated plots. Cutting juniper stimulated herbaceous plant recovery, improved infiltration capacity, and protected the soil surface from even large thunderstorms. Juniper-free plots could only be induced to produce runoff from high-intensity events that would be expected to occur once every 50 years. Runoff events from these higher-intensity simulations produced negligible levels of both sheet and rill erosion. While specific inferences drawn from the current study are limited to juniper-affected sites in the Intermountain sagebrush steppe, the scope of ecosystem impacts are consistent with woody-plant invasion in other ecosystems around the world. Resumen El ''Western juniper'' (Juniperus occidentalis spp. occidentalis Hook.) se ha expandido, y ahora domina millones de hectáreas de pastizal de ''Sagebrush/Bunchgrass'' en la Gran Cuenca y en la región interior del Pacifico Noroeste. En muchos sitio el ''Western juniper'' ha aumentado significativamente la exposición del suelo al reducir la densidad de las especies herbáceas y del mantillo superficial. Utilizamos te´cnicas de simulación de lluvia y canalillos para evaluar la infiltración, el escurrimiento y la erosión en tratamientos de campo con corte y sin corte 10 añ os despue´s de remover el ''Western juniper''. Las laderas de las colinas dominadas por ''Western juniper'' tenían significativamente menos cobertura de plantas herbáceas y mantillo y produjeron un escurrimiento rápido a partir de eventos de lluvia de baja intensidad, del tipo que se esperaría ocurrieran cada dos añ os. En las parcelas dominadas ''Western juniper'', la exposición directa del suelo a los impactos de la lluvia resultó en altos niveles de erosión laminar (295 kg ? ha 21). Grandes parches de suelo desnudo interconectados concentraron el escurrimiento en los canalillos con una mayor velocidad de flujo y fuerza erosiva, resultando en tasas de erosión de surco 15 veces mayor que en las parcelas dominadas por ''Western juniper''. La remoci...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.