This powerful new land surface modeling system integrates data from advanced observing systems to support improved forecast model initialization and hydrometeorological investigations. Land surface temperature and wetness conditions affect and are affected by numerous climatological, meteorological, ecological, and geophysical phenomena. Therefore, accurate, high-resolution estimates of terrestrial water and energy storages are valuable for predicting climate change, weather, biological and agricultural productivity, and flooding, and for performing a wide array of studies in the broader biogeosciences. In particular, terrestrial stores of energy and water modulate fluxes between the land and atmosphere and exhibit persistence on diurnal, seasonal, and interannual time scales. Furthermore, because soil moisture, temperature, and snow are integrated states, biases in land surface forcing data and parameterizations accumulate as errors in the representations of these states in operational numerical weather forecast and climate models and their associated coupled data assimilation systems. That leads to incorrect surface water and energy partitioning, and, hence, inaccurate predictions. Reinitialization of land surface states would mollify this problem if the land surface fields were reliable and available globally, at high spatial resolution, and in near-real time.A Global Land Data Assimilation System (GLDAS) has been developed jointly by scientists at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) in order to produce such fields. GLDAS makes use of the new generation of groundand space-based observation systems, which provide data to constrain the modeled land surface states. Constraints are applied in two ways. First, by forcing the land surface models (LSMs) with observationbased meteorological fields, biases in atmospheric model-based forcing can be avoided. Second, by employing data assimilation techniques, observations of land surface states can be used to curb unrealistic model states. Through innovation and an ever-improving conceptualization of the physics underlying earth system processes, LSMs have continued to evolve and to display an improved ability to simulate complex phenomena. Concurrently, increases in computing power and affordability are allowing global simulations to be run more routinely and with less processing time, at spatial resolutions that could only be simulated using supercomputers five years ago. GLDAS harnesses this low-cost computing power to integrate observationbased data products from multiple sources within a sophisticated, global, high-resolution land surface modeling framework.What makes GLDAS unique is the union of all of these qualities: it is a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial modeling system that incorporates satellite-and ground-based observations in order to produce opt...
In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, a incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 W m À2 . At the Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.