An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ 2 H VSMOW-SLAP values from-210.8 to +397.0 mUr or ‰, for δ 13 C VPDB-LSVEC from-40.81 to +0.49 mUr, and for δ 15 N Air from-5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C 16 nalkanes, n-C 20-fatty acid methyl esters (FAMEs), glycines, and L-valines, together with polyethylene powder and string, one n-C 17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2 H-enriched vacuum oil. Eleven laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic calibrations against international primary measurement standards. The use of reference waters in silver tubes allowed direct calibration of δ 2 H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Due to exchangeable hydrogen, amino acid RMs currently are recommended only for carbon-and nitrogen-isotope measurements. Some amino acids contain 13 C and carbon-bound organic 2 Henrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
A borehole draining a water-bearing dyke fracture at 3.2-km depth in a South African Au mine was isolated from the open mine environment. Geochemical, stable isotopic, nucleic acid-based, and phospholipid fatty acid (PLFA) analyses were employed as cultureindependent means for assessing shifts in the microbial community and habitat as the system equilibrated with the native rock-water environment. Over a two-month period, the pH increased from 5.5 to 7.4, concurrent with a drop in pe from −2 to −3. Whereas rDNAs related to Desulfotomaculum spp. represented the major clone type encountered throughout, lipid biomarker profiling along with 16S rDNA clone library and terminal restriction fragment length polymorphism (T-RFLP) analyses indicated the emergence of other Gram-positive and deeply-branching lineages in samples during the later stages of the equilibration period. A biofilm that formed on the mine wall below the borehole produced abundant rDNAs related to the α Proteobacteria. β-and γ -Proteobacteria appeared to transiently bloom in the borehole shortly after isolation. Chemical modeling and sulfur isotope analyses of the borehole effluent indicated that microbial sulfate reduction was the major terminal electron-accepting process shortly after isolation, whereas Fe +3 reduction dominated towards the end of the experiment. The persistence of Desulfotomaculum-like bacteria throughout suggests that these organisms adapted to changing geochemical conditions as the redox decreased and pH increased following the isolation of the borehole from the mine atmosphere. The restoration of anaerobic aquatic chemistry to this borehole environment may have allowed microbiota indigenous to the local basalt aquifer to become more dominant among the diverse collection of bacterial lineages present in the borehole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.