Purpose: To study measurement repeatability and physiological determinants on measurement stability for phase contrast MRI (PC-MRI) measurements of cyclic volume changes (DV) of brain arteries, veins, and cerebrospinal fluid (CSF) compartments. Materials and Methods:Total cerebral blood flow (tCBF), total internal jugular flow (tJBF) and spinal CSF flow at C2-C3 level and CSF in the aqueduct was measured using five repetitions in 20 healthy subjects. After subtracting net flow, waveforms were integrated to calculate DV of arterial, venous, and cerebrospinal fluid compartments. The intraclass correlation coefficient (ICC) was used to measure repeatability. Systematic errors were investigated by a series of phantom measurements.Results: For DV calculated from tCBF, tJBF and both CSF waveforms, the ICC was !0.85. DV from the tCBF waveform decreased linearly between repetitions (P ¼ 0.012). Summed CSF and venous volume being shifted out from the cranium was correlated with DV calculated from the tCBF waveform (r ¼ 0.75; P < 0.001). Systematic errors increased at resolutions <4 pixels per diameter.Conclusion: Repeatability of DV calculated from tCBF, tJBF, and CSF waveforms allows useful interpretations. The subject's time in the MR system and imaging resolution should be considered when interpreting volume changes. Summed CSF and venous volume changes was associated with arterial volume changes.
A PD with ad libitum intake had a significant and persistent effect on liver fat and differed significantly from a conventional LFD at 6 months. This difference may be due to food quality, for example, a higher content of mono- and polyunsaturated fatty acids in the PD. Changes in liver fat did not associate with alterations in insulin sensitivity.
Aims/hypothesis There is evidence to suggest that ectopic fat deposition in liver and skeletal muscle may differ between black and white women resulting in organ-specific differences in insulin sensitivity. Accordingly, the aim of the study was to examine ethnic differences in hepatic and peripheral insulin sensitivity, and the association with hepatic and skeletal muscle lipid content, and skeletal muscle gene expression. Methods In a cross-sectional study including 30 obese premenopausal black and white women, body composition (dual energy x-ray absorptiometry), liver fat and skeletal muscle (soleus and tibialis anterior) fat accumulation (proton-magnetic resonance spectroscopy), skeletal muscle gene expression, insulin sensitivity (two-step isotope labelled, hyperinsulinaemic–euglycaemic clamp with 10 mU m–2 min–1 and 40 mU m–2 min–1 insulin infusions), and serum adipokines were measured. Results We found that, although whole-body insulin sensitivity was not different, obese white women presented with lower hepatic insulin sensitivity than black women (% suppression of endogenous glucose production [% supp EGP], median [interquartile range (IQR)]: 17 [5–51] vs 56 [29–100] %, p=0.002). While liver fat tended to be lower (p=0.065) and skeletal muscle fat deposition tended to be higher (p=0.074) in black compared with white women, associations with insulin sensitivity were only observed in black women (% supp EGP vs liver fat: r=–0.57, p<0.05 and % supp EGP vs soleus fat: r=–0.56, p<0.05). Conclusions/interpretation These findings may suggest that black women are more sensitive to the effects of ectopic lipid deposition than white women.
Aims/hypothesis The aim of the study was to investigate ectopic fat deposition and insulin sensitivity, in a parallel single-blinded randomised controlled trial, comparing Paleolithic diet alone with the combination of Paleolithic diet and exercise in individuals with type 2 diabetes. Methods Thirty-two individuals with type 2 diabetes with BMI 25-40 kg/m 2 and 30-70 years of age followed a Paleolithic diet ad libitum for 12 weeks. In addition, study participants were randomised by computer program to either supervised combined exercise training (PD-EX group) or standard care exercise recommendations (PD group). Staff performing examinations and assessing outcomes were blinded to group assignment. Thirteen participants were analysed in each group: hepatic and peripheral insulin sensitivity were measured using the hyperinsulinaemic-euglycaemic clamp technique combined with [6, H 2 ]glucose infusion, and liver fat was assessed by proton magnetic resonance spectroscopy; both analyses were secondary endpoints. Intramyocellular lipid (IMCL) content was measured by magnetic resonance spectroscopy as a secondary analysis. All examinations were performed at Umeå University Hospital, Umeå, Sweden. Results Both study groups showed a median body weight loss of 7 kg. Fat mass decreased by 5.7 kg in the PD group and by 6.5 kg in the PD-EX group. Maximum oxygen uptake increased in the PD-EX group only. Liver fat showed a consistent reduction (74% decrease) in the PD group, while the response in the PD-EX group was heterogeneous (p < 0.05 for the difference between groups). IMCL content of the soleus muscle decreased by 40% in the PD group and by 22% in the PD-EX group (p < 0.05 for the difference between groups). Both groups improved their peripheral and adipose tissue insulin sensitivity, but not their hepatic insulin sensitivity. Plasma fetuin-A decreased by 11% in the PD group (p < 0.05) and remained unchanged in the PD-EX group. Liver fat changes during the intervention were correlated with changes in fetuin-A (r S = 0.63, p < 0.01). Participants did not report any important adverse events caused by the intervention. Conclusions/interpretation A Paleolithic diet reduced liver fat and IMCL content, while there was a tissue-specific heterogeneous response to added exercise training.
By combining PCA and texture analysis, ADC texture characteristics were identified, which seems to hold pretreatment prognostic information, independent of known prognostic factors such as age, stage, and surgical procedure. These findings encourage further studies with a larger patient cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.