Like all members of the genus, Conus californicus has a specialized venom apparatus, including a modified radular tooth, with which it injects paralyzing venom into its prey. In this paper the venom duct and its connection to the pharynx, along with the radular sac and teeth, were examined using light and transmission electron microscopy. The general anatomy of the venom apparatus resembles that in other members of the genus, but several features are described that have not been previously reported for other species. The proximal (posterior) quarter of the venom duct is composed of a complex epithelium that may be specialized for active transport rather than secretion. The distal portion of the duct is composed of a different type of epithelium, suggestive of holocrine secretion, and the cells display prominent intracellular granules of at least two types. Similar granules fill the lumen of the duct. The passageway between the lumen of the venom duct and pharynx is a flattened branching channel that narrows to a width of 10 micro m and is lined by a unique cell type of unknown function. Granular material similar to that in the venom duct was also found in the lumen of individual teeth within the radular sac. Mass spectrometry (MALDI-TOF) demonstrated the presence of putative peptides in material derived from the tooth lumen, and all of the more prominent species were also evident in the anterior venom duct. Radular teeth thus appear to be loaded with peptide toxins while they are still in the radular sac.
A combination of cDNA cloning and detailed mass spectrometric analyses was employed to identify novel conotoxins from Conus victoriae. Eleven conotoxin sequences were determined using molecular methods: one belonging to the A superfamily (Vc1.1), six belonging to the O superfamily (Vc6.1-Vc6.6) and four members of the T superfamily (Vc5.1-Vc5.4). In order to verify the sequences and identify the post-translational modifications (excluding the disulfide connectivity) of three Conus victoriae conotoxins, vc1a, vc5a and vc6a, deduced from sequences Vc1.1, Vc5.1, and Vc6.1, respectively, liquid chromatography/electrospray ionization ion trap mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanospray ionization ion trap mass spectrometry with collisionally induced dissociation were performed on reduced and alkylated venom fractions. We report that vc1a, the native form of alpha-conotoxin Vc1.1 (an unmodified 16 amino acid residue peptide that has notable pain-relieving capabilities), includes a hydroxyproline and a gamma-carboxyglutamate residue. Conotoxin vc5a is a 10-residue peptide with two disulfide bonds and a hydroxyproline and vc6a is a 25 amino acid peptide with three disulfide bonds.
“Snails can kill” is a statement that receives much disbelief. Yet the venom from Conus geographus, as delivered by a disposable hypodermic-like needle, has indeed killed many unsuspecting human victims. Our understanding of their milked venom the essence of these fatalities, is in itself non-existent. Here, we present the molecular mass analysis of the milked venom of C. geographus, providing the first insight into the composition of its deadly cocktail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.