Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.
Prostaglandin EP3 receptors in the central nervous system (CNS) may exert an excitatory effect on urinary bladder function via modulation of bladder afferent pathways. We have studied this action, using two EP3 antagonists, (2E)-3-{1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl}-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG041) and (2E)-N-{[5-bromo-2-(methyloxy)phenyl] sulfonyl}-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (CM9). DG041 and CM9 were proven to be selective EP3 antagonists with radioligand binding and functional fluorescent imaging plate reader (FLIPR) assays. Their effects on volume-induced rhythmic bladder contraction and the visceromotor reflex (VMR) response to urinary bladder distension (UBD) were evaluated in female rats after intrathecal or intracerebroventricular administration. Both DG041 and CM9 showed a high affinity for EP3 receptors at subnanomolar concentrations without significant selectivity for any splice variants. At the human EP3C receptor, both inhibited calcium influx produced by the nonselective agonist PGE2. After intrathecal or intracerebroventricular administration both CM9 and DG041 dose-dependently reduced the frequency, but not the amplitude, of the bladder rhythmic contraction. With intrathecal administration DG041 and CM9 produced a long-lasting and robust inhibition on the VMR response to UBD, whereas with intracerebroventricular injection both compounds elicited only a transient reduction of the VMR response to bladder distension. These data support the concept that EP3 receptors are involved in bladder micturition at supraspinal and spinal centers and in bladder nociception at the spinal cord. A centrally acting EP3 receptor antagonist may be useful in the control of detrusor overactivity and/or pain associated with bladder disorders.
High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP 3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies. These highly potent, selective, and orally active EP 3 antagonists are excellent tool compounds for investigating and validating potential therapeutic benefits from selectively inhibiting the EP 3 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.