The aim of this critical review is to reach a global consensus regarding the introduction of follow-on versions of nonbiological complex drugs (NBCD). A nonbiological complex drug is a medicinal product, not being a biological medicine, where the active substance is not a homo-molecular structure, but consists of different (closely related and often nanoparticulate) structures that cannot be isolated and fully quantitated, characterized and/or described by state of the art physicochemical analytical means and where the clinical meaning of the differences is not known. The composition, quality and in vivo performance of NBCD are highly dependent on manufacturing processes of both the active ingredient as well as in most cases the formulation. The challenges posed by the development of follow-on versions of NBCD are illustrated in this paper by discussing the 'families' of liposomes, iron-carbohydrate ('iron-sugar') drugs and glatiramoids. It is proposed that the same principles for the marketing authorization of copies of NBCD as for biosimilars be used: the need for animal and/or clinical data and the need to show similarity in quality, safety and efficacy. The regulatory approach of NBCD will have to take into consideration the specific characteristics of the drugs, their formulation and manufacturing process and the resulting critical attributes to achieve their desired quality, safety and efficacy. As with the biosimilars, for the NBCD product, family-specific methods should be evaluated and applied where scientifically proven, including sophisticated quality methods, pharmacodynamic markers and animal models. Concerning substitution and interchangeability of NBCD, it is also advisable to take biosimilars as an example, i.e. (1) substitution without the involvement of a healthcare professional should be discouraged to ensure traceability of the treatment of individual patients, (2) keep an individual patient on a specific treatment if the patient is doing well and only switch if unavoidable and (3) monitor the safety and efficacy of the new product if switching occurs.
Abstract. In the last decade, discussions on the development of the regulatory framework of generic versions of complex drugs such as biologicals and non-biological complex drugs have attracted broad attention. The terminology used is far from harmonized and can lead to multiple interpretations of legal texts, reflection papers, and guidance documents regarding market introduction as well as reimbursement. This article describes the meaning of relevant terms in different global regions (Europe, USA, WHO) and offers a proposal for a globally accepted terminology regarding (non-) biological complex drugs.
Biotechnology and nanotechnology provide a growing number of innovator-driven complex drug products and their copy versions. Biologics exemplify one category of complex drugs, but there are also nonbiological complex drug products, including many nanomedicines, such as iron-carbohydrate complexes, drug-carrying liposomes or emulsions, and glatiramoids. In this white paper, which stems from a 1-day conference at the New York Academy of Sciences, we discuss regulatory frameworks in use worldwide (e.g., the U.S. Food and Drug Administration, the European Medicines Agency, the World Health Organization) to approve these complex drug products and their follow-on versions. One of the key questions remains how to assess equivalence of these complex products. We identify a number of points for which consensus was found among the stakeholders who were present: scientists from innovator and generic/follow-on companies, academia, and regulatory bodies from different parts of the world. A number of topics requiring follow-up were identified: (1) assessment of critical attributes to establish equivalence for follow-on versions, (2) the need to publish scientific findings in the public domain to further progress in the field, (3) the necessity to develop worldwide consensus regarding nomenclature and labeling of these complex products, and (4) regulatory actions when substandard complex drug products are identified.
For small - low molecular weight - molecule medicines a robust regulatory system has evolved over the years. This system guarantees high and constant quality of our (generic) medicines. Pharmaceutical equivalence and bioequivalence assessment are the pillars under that system. But there are complex medicines where the question of equivalence is more challenging to answer. For biologicals the paradigm of similarity rather than equality (the emergence of 'biosimilars') was developed in the past decade. This has been a program where an evolutionary, science based approach has been chosen by the frontrunner regulatory body, the EMA, with a 'learn and confirm' character. In addition, there is another group of complex drugs, the non-biological complex drugs, NBCDs, where the generic paradigm can be challenged as well. The NBCDs are defined as: 1. consisting of a complex multitude of closely related structures; 2. the entire multitude is the active pharmaceutical ingredient; 3. the properties cannot be fully characterized by physicochemical analysis and 4. the consistent, tightly controlled manufacturing process is fundamental to reproduce the product. NBCDs encompass product families such as the glatiramoids, liposomes, iron-carbohydrate colloids and many candidates of the group of the upcoming nanoparticulate systems. Following the main principles of regulatory pathways for biologicals (with appropriate product-by-product adjustments), instead of that for small molecules, would be the more logical strategy for these NBCDs. The status and outstanding regulatory issues for biosimilars and NBCD-similars/follow on versions were discussed at a conference in Budapest, Hungary (October 2014) and this commentary touches upon the issues brought up in the presentations, deliberations and conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.