Predictive analytics methods in education are seeing widespread use and are producing increasingly accurate predictions of students’ outcomes. With the increased use of predictive analytics comes increasing concern about fairness for specific subgroups of the population. One approach that has been proposed to increase fairness is using demographic variables directly in models, as predictors. In this paper we explore issues of fairness in the use of demographic variables as predictors of long term student outcomes, studying the arguments for and against this practice. We analyze arguments for the inclusion of demographic variables, specifically claims that this approach improves model performance and concerns around ‘color-blind’ racism in this modeling approach. We also consider arguments against including demographic variables as predictors, including reduced actionability of predictions, risk of reinforcing bias, and limits of categorization. We then discuss how contextual factors of predictive models should influence case-specific decisions for the inclusion or exclusion of demographic variables and discuss the role of proxy variables. We conclude that, on balance, there are greater benefits to fairness if demographic variables are used to validate fairness rather than as predictors within models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.