Overcoming vaccine hesitancy is critical to containing the COVID-19 pandemic in the United States. To increase vaccination rates, the State of Ohio launched a million dollar lottery in May 2021. Following a pre-registered analysis, we estimate the effects of Ohio’s lottery program Vax-a-Million on COVID-19 vaccination rates by comparing it to a “synthetic control” composed of eight other states. We find a statistically insignificant 1.3% decrease in the full vaccination rate in Ohio at the end of the lottery period. We investigate the robustness of our conclusion to model specifications through a multiverse analysis of 216 possible models, including longer time periods and alternative vaccination measures. The majority (88%) find small negative effects in line with the results of our pre-registered model. While our results are most consistent with a decrease in vaccination rate, they do not allow a firm conclusion on whether the lottery increased or decreased vaccine uptake.
Predictive analytics methods in education are seeing widespread use and are producing increasingly accurate predictions of students’ outcomes. With the increased use of predictive analytics comes increasing concern about fairness for specific subgroups of the population. One approach that has been proposed to increase fairness is using demographic variables directly in models, as predictors. In this paper we explore issues of fairness in the use of demographic variables as predictors of long term student outcomes, studying the arguments for and against this practice. We analyze arguments for the inclusion of demographic variables, specifically claims that this approach improves model performance and concerns around ‘color-blind’ racism in this modeling approach. We also consider arguments against including demographic variables as predictors, including reduced actionability of predictions, risk of reinforcing bias, and limits of categorization. We then discuss how contextual factors of predictive models should influence case-specific decisions for the inclusion or exclusion of demographic variables and discuss the role of proxy variables. We conclude that, on balance, there are greater benefits to fairness if demographic variables are used to validate fairness rather than as predictors within models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.