A new framework for the analysis of multiple-input multiple-output (MIMO) wireless systems is introduced to account for mutual coupling effects in the antenna arrays. The multiport interactions at transmit and receive are characterized by representing the channel using a scattering parameter matrix. A new power constraint that limits the average radiated power is also introduced. The capacity of the MIMO system with mutual coupling is defined as the maximum mutual information of the transmit and receive vectors over all possible transmit signaling and receive loading. Full-wave electromagnetic antenna simulations combined with a simple path-based channel model are used to demonstrate the utility of the method.
pattern gain. As a result, four inverted-F antennas and four quarter wavelength slot antennas are integrated within the half of wavelength volume. They exhibit better than 210 dB isolation, low envelope correlation coefficient and similar ergodic capacity with ideal 8 3 8 MIMO systems. The proposed antenna is extended to the 40-port MIMO cube and it shows the good MIMO potential without the performance degradation. REFERENCES 1.
Detailed performance assessment of space-time coding algorithms in realistic channels is critically dependent upon accurate knowledge of the wireless channel spatial characteristics. This paper presents an experimental measurement platform capable of providing the narrowband channel transfer matrix for wireless communications scenarios. The system is used to directly measure key multiple-input-multiple-output parameters in an indoor environment at 2.45 GHz. Linear antenna arrays of different sizes and construction with up to ten elements at transmit and receive are utilized in the measurement campaign. This data is analyzed to reveal channel properties such as transfer matrix element statistical distributions and temporal and spatial correlation. Additionally, the impact of parameters such as antenna element polarization, directivity, and array size on channel capacity are highlighted. The paper concludes with a discussion of the relationship between multipath richness and path loss, as well as their joint role in determining channel capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.