The ultra-diffuse galaxy in the NGC 5846 group (NGC 5846_UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Muller et al. published a velocity dispersion, based on a dozen of its GCs. Within their quoted uncertainties, the resulting dynamical mass allowed for either a dark matter free or a dark matter dominated galaxy. Here we present spectra from KCWI which reconfirms membership of the NGC 5846 group and reveals a stellar velocity dispersion for UDG1 of σGC = 17 ± 2 km/s. Our dynamical mass, with a reduced uncertainty, indicates a very high contribution of dark matter within the effective radius. We also derive an enclosed mass from the locations and motions of the GCs using the Tracer Mass Estimator, finding a similar mass inferred from our stellar velocity dispersion. We find no evidence that the galaxy is rotating and is thus likely pressure-supported. The number of confirmed GCs, and the total number inferred for the system (∼45), suggest a total halo mass of ∼2 × 1011 M⊙. A cored mass profile is favoured when compared to our dynamical mass. Given its stellar mass of 1.1× 108 M⊙, NGC 5846_UDG1 appears to be an ultra-diffuse galaxy with a dwarf-like stellar mass and an overly massive halo.
Here, we present a kinematical analysis of the Virgo cluster ultradiffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287’s association both with the Virgo cluster and its globular cluster (GC) system, measuring a recessional velocity of 1116 ± 2 km s−1. We measure a stellar velocity dispersion (19 ± 6 km s−1) and infer both a dynamical mass ($1.11^{+0.81}_{-0.81} \times 10^{9} \ \mathrm{M_{\odot }}$) and mass-to-light ratio (M/L) ($13^{+11}_{-11}$) within the half-light radius (4.4 kpc). This places VCC 1287 slightly above the well-established relation for normal galaxies, with a higher M/L for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number–dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low-concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive haloes and a failed galaxy origin for at least some UDGs.
It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster–rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity of L V,gal ≈ 6 × 107 L ⊙ (M ⋆ ≈ 1.2 × 108 M ⊙) and a total globular cluster luminosity of L V,GCs ≈ 7.6 × 106 L ⊙, we find that the clusters currently comprise ∼13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no “normal” low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today.
Context. Many ultra diffuse galaxies (UDGs) have now been identified in clusters of galaxies. However, the number of nearby UDGs suitable for detailed follow-up remain rare. Aims. Our aim is to begin to identify UDGs in the environments of nearby bright early-type galaxies from the VEGAS survey. Methods. Here we use a deep g band image of the NGC 5846 group, taken as part of the VEGAS survey, to search for UDGs. Results. We found one object with properties of a UDG if it associated with the NGC 5846 group, which seems likely. The galaxy, we name NGC 5846_UDG1, has an absolute magnitude of M g = -14.2, corresponding to a stellar mass of ∼10 8 M . It also reveals a system of compact sources which are likely globular clusters. Based on the number of globular clusters detected we estimate a halo mass that is greater than 8×10 10 M for UDG1.
The dominant physical formation mechanism(s) for ultra-diffuse galaxies (UDGs) is still poorly understood. Here, we combine new, deep imaging from the Jeanne Rich Telescope with deep integral field spectroscopy from the Keck II telescope to investigate the formation of UDG1137+16. Our new analyses confirm both its environmental association with the low density UGC 6594 group, along with its large size of 3.3 kpc and status as a UDG. The new imaging reveals two distinct stellar components for UDG1137+16, indicating that a central stellar body is surrounded by an outer stellar envelope undergoing tidal interaction. Both the components have approximately similar stellar masses. From our integral field spectroscopy we measure a stellar velocity dispersion within the half-light radius (15 ± 4 km s−1) and find that UDG1137+16 is similar to some other UDGs in that it is likely dark matter dominated. Incorporating literature measurements, we also examine the current state of UDG observational kinematics. Placing these data on the central stellar velocity dispersion – stellar mass relation, we suggest there is little evidence for UDG1137+16 being created through a strong tidal interaction. Finally, we investigate the constraining power current dynamical mass estimates (from stellar and globular cluster velocity dispersions) have on the total halo mass of UDGs. As most are measured within the half-light radius, they are unable to accurately constrain UDG total halo masses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.