T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Inhibition of the key glycolytic activator 6-phosphofructokinase 2/fructose-2,6-bisphosphatase-3 (PFKFB3) by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) strongly attenuates pathological angiogenesis in cancer and inflammation. In addition to modulating endothelial proliferation and migration, 3PO also dampens proinflammatory activation of endothelial cells and experimental inflammation in vivo, suggesting a potential for 3PO in the treatment of chronic inflammation. The aim of our study was to explore if the anti-inflammatory action of 3PO in human endothelial cells was mediated by inhibition of PFKFB3 and glycolysis and assess if other means of PFKFB3 inhibition reduced inflammatory activation in a similar manner. We found that 3PO caused a rapid and transient reduction in IL-1β-and TNF-induced phosphorylation of both IKKα/β and JNK, thus inhibiting signaling through the NFκB and the stress-activated kinase pathways. However, in contrast to 3PO-treatment, neither shRNA-mediated silencing of PFKFB3 nor treatment with the alternative PFKFB3 inhibitor 7,8-dihydroxy-3-(4-hydroxy-phenyl)-chromen-4-one (YN1) prevented cytokineinduced NFκB signaling and upregulation of the adhesion molecules VCAM-1 and E-selectin, implying off target effects of 3PO. Collectively, our results suggest that the anti-inflammatory action of 3PO in human endothelial cells is not limited to inhibition of PFKFB3 and cellular glycolysis.
In humans, there are two forms of glutaminase (GLS), designated GLS1 and GLS2. These enzymes catalyse the conversion of glutamine to glutamate. GLS1 exists as two isozymes: kidney glutaminase (KGA) and glutaminase C (GAC). Several GLS inhibitors have been identified, of which DON (6‐diazo‐5‐oxonorleucine), BPTES (bis‐2‐(5‐phenylacetamido‐1, 3, 4‐thiadiazol‐2‐yl) ethyl sulphide), 968 (5‐(3‐Bromo‐4‐(dimethylamino)phenyl)‐2,2‐dimethyl‐2,3,5,6‐tetrahydrobenzo[a]phenanthridin‐4(1H)‐one) and CB839 (Telaglenastat) are the most widely used. However, these inhibitors have variable efficacy, specificity and bioavailability in research and clinical settings, implying the need for novel and improved GLS inhibitors. Based on this need, a diverse library of 28,000 compounds from Enamine was screened for inhibition of recombinant, purified GAC. From this library, one inhibitor designated compound 19 (C19) was identified with kinetic features revealing allosteric inhibition of GAC in the µ m range. Moreover, C19 inhibits anti‐CD3/CD28‐induced CD4+ T‐cell proliferation and cytokine production with similar or greater potency as compared to BPTES. Taken together, our data suggest that C19 has the potential to modulate GLS1 activity and alter metabolic activity of T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.