Thawing permafrost in the sub-Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub-Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO 2 ) and CH 4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet-growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO 2 sink function with about 16% and the CH 4 emissions with 22%. Calculating the flux as CO 2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100-year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH 4 emissions. Correspondence: Torbjö rn Johansson, tel. 1 46 0 46 222 39 74, fax 1 46 0 46 222 40 11, *The water fluxes of CO 2 -C and CH 4 -C used for scaling are not measured at the Stordalen mire. w The whole mire values are area-weighted averages except for the total carbon accumulated. zThe CH 4 -C value used is a median value. gs, growing season 5 153 days.
A research‐based understanding of permafrost distribution at a sufficient spatial resolution is important to meet the demands of science, education and society. We present a new permafrost map for Norway, Sweden and Finland that provides a more detailed and updated description of permafrost distribution in this area than previously available. We implemented the CryoGRID1 model at 1 km2 resolution, forced by a new operationally gridded data‐set of daily air temperature and snow cover for Finland, Norway and Sweden. Hundred model realisations were run for each grid cell, based on statistical snow distributions, allowing for the representation of sub‐grid variability of ground temperature. The new map indicates a total permafrost area (excluding palsas) of 23 400 km2 in equilibrium with the average 1981–2010 climate, corresponding to 2.2 per cent of the total land area. About 56 per cent of the area is in Norway, 35 per cent in Sweden and 9 per cent in Finland. The model results are thoroughly evaluated, both quantitatively and qualitatively, as a collaboration project including permafrost experts in the three countries. Observed ground temperatures from 25 boreholes are within ± 2 °C of the average modelled grid cell ground temperature, and all are within the range of the modelled ground temperature for the corresponding grid cell. Qualitative model evaluation by field investigators within the three countries shows that the map reproduces the observed lower altitudinal limits of mountain permafrost and the distribution of lowland permafrost. Copyright © 2016 John Wiley & Sons, Ltd.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.