Identifying the dynamics of physical systems requires a machine learning model that can assimilate observational data, but also incorporate the laws of physics. Neural Networks based on physical principles such as the Hamiltonian or Lagrangian NNs have recently shown promising results in generating extrapolative predictions and accurately representing the system's dynamics. We show that by additionally considering the actual energy level as a regularization term during training and thus using physical information as inductive bias, the results can be further improved. Especially in the case where only small amounts of data are available, these improvements can significantly enhance the predictive capability. We apply the proposed regularization term to a Hamiltonian Neural Network (HNN) and Constrained Hamiltonian Neural Network (CHHN) for a single and double pendulum, generate predictions under unseen initial conditions and report significant gains in predictive accuracy. * equal contribution Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.