The data-based discovery of effective, coarse-grained (CG) models of high-dimensional dynamical systems presents a unique challenge in computational physics and particularly in the context of multiscale problems. The present paper offers a probabilistic perspective that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as well as their dynamics. We make use of the expressive ability of deep neural networks in order to represent the right-hand side of the CG evolution law. Furthermore, we demonstrate how domain knowledge that is very often available in the form of physical constraints (e.g. conservation laws) can be incorporated with the novel concept of virtual observables. Such constraints, apart from leading to physically realistic predictions, can significantly reduce the requisite amount of training data which enables reducing the amount of required, computationally expensive multiscale simulations (Small Data regime). The proposed state-space model is trained using probabilistic inference tools and, in contrast to several other techniques, does not require the prescription of a fine-to-coarse (restriction) projection nor time-derivatives of the state variables. The formulation adopted is capable of quantifying the predictive uncertainty as well as of reconstructing the evolution of the full, fine-scale system which allows to select the quantities of interest a posteriori. We demonstrate the efficacy of the proposed framework in a high-dimensional system of moving particles.
The data-based discovery of effective, coarse-grained (CG) models of high-dimensional dynamical systems presents a unique challenge in computational physics and particularly in the context of multiscale problems. The present paper offers a probabilistic perspective that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as well as their dynamics. We make use of the expressive ability of deep neural networks in order to represent the right-hand side of the CG evolution law. Furthermore, we demonstrate how domain knowledge that is very often available in the form of physical constraints (e.g. conservation laws) can be incorporated with the novel concept of virtual observables. Such constraints, apart from leading to physically realistic predictions, can significantly reduce the requisite amount of training data which enables reducing the amount of required, computationally expensive multiscale simulations (Small Data regime). The proposed state-space model is trained using probabilistic inference tools and, in contrast to several other techniques, does not require the prescription of a fine-to-coarse (restriction) projection nor time-derivatives of the state variables. The formulation adopted is capable of quantifying the predictive uncertainty as well as of reconstructing the evolution of the full, fine-scale system which allows to select the quantities of interest a posteriori. We demonstrate the efficacy of the proposed framework in a high-dimensional system of moving particles.
Identifying the dynamics of physical systems requires a machine learning model that can assimilate observational data, but also incorporate the laws of physics. Neural Networks based on physical principles such as the Hamiltonian or Lagrangian NNs have recently shown promising results in generating extrapolative predictions and accurately representing the system's dynamics. We show that by additionally considering the actual energy level as a regularization term during training and thus using physical information as inductive bias, the results can be further improved. Especially in the case where only small amounts of data are available, these improvements can significantly enhance the predictive capability. We apply the proposed regularization term to a Hamiltonian Neural Network (HNN) and Constrained Hamiltonian Neural Network (CHHN) for a single and double pendulum, generate predictions under unseen initial conditions and report significant gains in predictive accuracy. * equal contribution Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).
Neural Operators offer a powerful, data-driven tool for solving parametric PDEs as they can represent maps between infinite-dimensional function spaces. In this work, we employ physics-informed Neural Operators in the context of high-dimensional, Bayesian inverse problems. Traditional solution strategies necessitate an enormous, and frequently infeasible, number of forward model solves, as well as the computation of parametric derivatives. In order to enable efficient solutions, we extend Deep Operator Networks (DeepONets) by employing a RealNVP architecture which yields an invertible and differentiable map between the parametric input and the branch-net output. This allows us to construct accurate approximations of the full posterior, irrespective of the number of observations and the magnitude of the observation noise, without any need for additional forward solves nor for cumbersome, iterative sampling procedures. We demonstrate the efficacy and accuracy of the proposed methodology in the context of inverse problems for three benchmarks: an anti-derivative equation, reaction-diffusion dynamics and flow through porous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.