Different aspects of bone surgery simulation has been a popular topic in haptics research field. This demonstration paper has two major results: a Free and Open Source Software (FOSS) implementation of a well known algorithm for tool-bone interaction force estimation, and an evaluation conducted as part of a suggested Usercentered design approach for creation of a surgery simulator targeting Oral Surgery in particular.
Spatial haptic interfaces have been around for 20 years. Yet, few affordable devices have been produced, and the design space in terms of physical workspace and haptic fidelity of devices that have been produced are limited and discrete. In this paper, an open-source, open-hardware module-based kit is presented that allows an interaction designer with little electro-mechanical experience to manufacture and assemble a fully working spatial haptic interface. It also allows for modification in shape and size as well as tuning of parameters to fit a particular task or application. Results from an evaluation showed that the haptic quality of the WoodenHaptics device was on par with a Phantom Desktop and that a novice could assemble it with guidance in a normal office space. This open source starting kit, uploaded free-to-download online, affords sketching in hardware; it "unsticks" the hardware from being a highly-specialized and esoteric craft to being an accessible and user-friendly technology, while maintaining the feel of high-fidelity haptics.
The purpose of the study was to investigate which supervisory approach afforded the most efficient learning method for undergraduate students in oral and maxillofacial surgery (OMS) using a computerised third molar surgery simulator. Fifth year dental students participated voluntarily in a randomised experimental study using the simulator. The amount of time required and the number of trials used by each student were evaluated as a measure of skills development. Students had the opportunity to practise the procedure until no further visible improvements were achieved. The study assessed four different types of supervision to guide the students. The first group was where they were supported by a teacher/specialist in OMS, the second by a teaching assistant, the third group practised without any supervision and the fourth received help from a simulator technician/engineer. A protocol describing assessment criteria was designed for this purpose, and a questionnaire was completed by all participating students after the study. The average number of attempts required to virtually remove a third molar tooth in the simulator was 1.44 times for the group supervised by an OMS teacher; 1.5 times for those supervised by a teaching assistant; 2.8 times for those who had no supervision; and 3.6 times when support was provided only by a simulator technician. The results showed that the most efficient experience of the students was when they were helped by an OMS teacher or a teaching assistant. In a time and cost-effective perspective, supervision by a teaching assistant for a third molar surgery simulator would be the optimal choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.